| Step | Hyp | Ref | Expression | 
						
							| 1 |  | aalioulem2.a |  |-  N = ( deg ` F ) | 
						
							| 2 |  | aalioulem2.b |  |-  ( ph -> F e. ( Poly ` ZZ ) ) | 
						
							| 3 |  | aalioulem2.c |  |-  ( ph -> N e. NN ) | 
						
							| 4 |  | aalioulem2.d |  |-  ( ph -> A e. RR ) | 
						
							| 5 |  | 1rp |  |-  1 e. RR+ | 
						
							| 6 |  | snssi |  |-  ( 1 e. RR+ -> { 1 } C_ RR+ ) | 
						
							| 7 | 5 6 | ax-mp |  |-  { 1 } C_ RR+ | 
						
							| 8 |  | ssrab2 |  |-  { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } C_ RR+ | 
						
							| 9 | 7 8 | unssi |  |-  ( { 1 } u. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) C_ RR+ | 
						
							| 10 |  | ltso |  |-  < Or RR | 
						
							| 11 | 10 | a1i |  |-  ( ph -> < Or RR ) | 
						
							| 12 |  | snfi |  |-  { 1 } e. Fin | 
						
							| 13 | 3 | nnne0d |  |-  ( ph -> N =/= 0 ) | 
						
							| 14 | 1 | eqcomi |  |-  ( deg ` F ) = N | 
						
							| 15 |  | dgr0 |  |-  ( deg ` 0p ) = 0 | 
						
							| 16 | 13 14 15 | 3netr4g |  |-  ( ph -> ( deg ` F ) =/= ( deg ` 0p ) ) | 
						
							| 17 |  | fveq2 |  |-  ( F = 0p -> ( deg ` F ) = ( deg ` 0p ) ) | 
						
							| 18 | 17 | necon3i |  |-  ( ( deg ` F ) =/= ( deg ` 0p ) -> F =/= 0p ) | 
						
							| 19 | 16 18 | syl |  |-  ( ph -> F =/= 0p ) | 
						
							| 20 |  | eqid |  |-  ( `' F " { 0 } ) = ( `' F " { 0 } ) | 
						
							| 21 | 20 | fta1 |  |-  ( ( F e. ( Poly ` ZZ ) /\ F =/= 0p ) -> ( ( `' F " { 0 } ) e. Fin /\ ( # ` ( `' F " { 0 } ) ) <_ ( deg ` F ) ) ) | 
						
							| 22 | 2 19 21 | syl2anc |  |-  ( ph -> ( ( `' F " { 0 } ) e. Fin /\ ( # ` ( `' F " { 0 } ) ) <_ ( deg ` F ) ) ) | 
						
							| 23 | 22 | simpld |  |-  ( ph -> ( `' F " { 0 } ) e. Fin ) | 
						
							| 24 |  | abrexfi |  |-  ( ( `' F " { 0 } ) e. Fin -> { a | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } e. Fin ) | 
						
							| 25 | 23 24 | syl |  |-  ( ph -> { a | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } e. Fin ) | 
						
							| 26 |  | rabssab |  |-  { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } C_ { a | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } | 
						
							| 27 |  | ssfi |  |-  ( ( { a | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } e. Fin /\ { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } C_ { a | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) -> { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } e. Fin ) | 
						
							| 28 | 25 26 27 | sylancl |  |-  ( ph -> { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } e. Fin ) | 
						
							| 29 |  | unfi |  |-  ( ( { 1 } e. Fin /\ { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } e. Fin ) -> ( { 1 } u. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) e. Fin ) | 
						
							| 30 | 12 28 29 | sylancr |  |-  ( ph -> ( { 1 } u. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) e. Fin ) | 
						
							| 31 |  | 1ex |  |-  1 e. _V | 
						
							| 32 | 31 | snid |  |-  1 e. { 1 } | 
						
							| 33 |  | elun1 |  |-  ( 1 e. { 1 } -> 1 e. ( { 1 } u. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) ) | 
						
							| 34 |  | ne0i |  |-  ( 1 e. ( { 1 } u. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) -> ( { 1 } u. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) =/= (/) ) | 
						
							| 35 | 32 33 34 | mp2b |  |-  ( { 1 } u. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) =/= (/) | 
						
							| 36 | 35 | a1i |  |-  ( ph -> ( { 1 } u. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) =/= (/) ) | 
						
							| 37 |  | rpssre |  |-  RR+ C_ RR | 
						
							| 38 | 9 37 | sstri |  |-  ( { 1 } u. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) C_ RR | 
						
							| 39 | 38 | a1i |  |-  ( ph -> ( { 1 } u. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) C_ RR ) | 
						
							| 40 |  | fiinfcl |  |-  ( ( < Or RR /\ ( ( { 1 } u. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) e. Fin /\ ( { 1 } u. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) =/= (/) /\ ( { 1 } u. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) C_ RR ) ) -> inf ( ( { 1 } u. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) , RR , < ) e. ( { 1 } u. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) ) | 
						
							| 41 | 11 30 36 39 40 | syl13anc |  |-  ( ph -> inf ( ( { 1 } u. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) , RR , < ) e. ( { 1 } u. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) ) | 
						
							| 42 | 9 41 | sselid |  |-  ( ph -> inf ( ( { 1 } u. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) , RR , < ) e. RR+ ) | 
						
							| 43 |  | 0re |  |-  0 e. RR | 
						
							| 44 |  | rpge0 |  |-  ( d e. RR+ -> 0 <_ d ) | 
						
							| 45 | 44 | rgen |  |-  A. d e. RR+ 0 <_ d | 
						
							| 46 |  | breq1 |  |-  ( c = 0 -> ( c <_ d <-> 0 <_ d ) ) | 
						
							| 47 | 46 | ralbidv |  |-  ( c = 0 -> ( A. d e. RR+ c <_ d <-> A. d e. RR+ 0 <_ d ) ) | 
						
							| 48 | 47 | rspcev |  |-  ( ( 0 e. RR /\ A. d e. RR+ 0 <_ d ) -> E. c e. RR A. d e. RR+ c <_ d ) | 
						
							| 49 | 43 45 48 | mp2an |  |-  E. c e. RR A. d e. RR+ c <_ d | 
						
							| 50 |  | ssralv |  |-  ( ( { 1 } u. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) C_ RR+ -> ( A. d e. RR+ c <_ d -> A. d e. ( { 1 } u. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) c <_ d ) ) | 
						
							| 51 | 9 50 | ax-mp |  |-  ( A. d e. RR+ c <_ d -> A. d e. ( { 1 } u. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) c <_ d ) | 
						
							| 52 | 51 | reximi |  |-  ( E. c e. RR A. d e. RR+ c <_ d -> E. c e. RR A. d e. ( { 1 } u. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) c <_ d ) | 
						
							| 53 | 49 52 | ax-mp |  |-  E. c e. RR A. d e. ( { 1 } u. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) c <_ d | 
						
							| 54 |  | eqeq1 |  |-  ( a = ( abs ` ( A - r ) ) -> ( a = ( abs ` ( A - b ) ) <-> ( abs ` ( A - r ) ) = ( abs ` ( A - b ) ) ) ) | 
						
							| 55 | 54 | rexbidv |  |-  ( a = ( abs ` ( A - r ) ) -> ( E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) <-> E. b e. ( `' F " { 0 } ) ( abs ` ( A - r ) ) = ( abs ` ( A - b ) ) ) ) | 
						
							| 56 | 4 | ad2antrr |  |-  ( ( ( ph /\ r e. RR ) /\ ( ( F ` r ) = 0 /\ -. A = r ) ) -> A e. RR ) | 
						
							| 57 |  | simplr |  |-  ( ( ( ph /\ r e. RR ) /\ ( ( F ` r ) = 0 /\ -. A = r ) ) -> r e. RR ) | 
						
							| 58 | 56 57 | resubcld |  |-  ( ( ( ph /\ r e. RR ) /\ ( ( F ` r ) = 0 /\ -. A = r ) ) -> ( A - r ) e. RR ) | 
						
							| 59 | 58 | recnd |  |-  ( ( ( ph /\ r e. RR ) /\ ( ( F ` r ) = 0 /\ -. A = r ) ) -> ( A - r ) e. CC ) | 
						
							| 60 | 4 | ad2antrr |  |-  ( ( ( ph /\ r e. RR ) /\ ( F ` r ) = 0 ) -> A e. RR ) | 
						
							| 61 | 60 | recnd |  |-  ( ( ( ph /\ r e. RR ) /\ ( F ` r ) = 0 ) -> A e. CC ) | 
						
							| 62 |  | simplr |  |-  ( ( ( ph /\ r e. RR ) /\ ( F ` r ) = 0 ) -> r e. RR ) | 
						
							| 63 | 62 | recnd |  |-  ( ( ( ph /\ r e. RR ) /\ ( F ` r ) = 0 ) -> r e. CC ) | 
						
							| 64 | 61 63 | subeq0ad |  |-  ( ( ( ph /\ r e. RR ) /\ ( F ` r ) = 0 ) -> ( ( A - r ) = 0 <-> A = r ) ) | 
						
							| 65 | 64 | necon3abid |  |-  ( ( ( ph /\ r e. RR ) /\ ( F ` r ) = 0 ) -> ( ( A - r ) =/= 0 <-> -. A = r ) ) | 
						
							| 66 | 65 | biimprd |  |-  ( ( ( ph /\ r e. RR ) /\ ( F ` r ) = 0 ) -> ( -. A = r -> ( A - r ) =/= 0 ) ) | 
						
							| 67 | 66 | impr |  |-  ( ( ( ph /\ r e. RR ) /\ ( ( F ` r ) = 0 /\ -. A = r ) ) -> ( A - r ) =/= 0 ) | 
						
							| 68 | 59 67 | absrpcld |  |-  ( ( ( ph /\ r e. RR ) /\ ( ( F ` r ) = 0 /\ -. A = r ) ) -> ( abs ` ( A - r ) ) e. RR+ ) | 
						
							| 69 | 57 | recnd |  |-  ( ( ( ph /\ r e. RR ) /\ ( ( F ` r ) = 0 /\ -. A = r ) ) -> r e. CC ) | 
						
							| 70 |  | simprl |  |-  ( ( ( ph /\ r e. RR ) /\ ( ( F ` r ) = 0 /\ -. A = r ) ) -> ( F ` r ) = 0 ) | 
						
							| 71 |  | plyf |  |-  ( F e. ( Poly ` ZZ ) -> F : CC --> CC ) | 
						
							| 72 | 2 71 | syl |  |-  ( ph -> F : CC --> CC ) | 
						
							| 73 | 72 | ffnd |  |-  ( ph -> F Fn CC ) | 
						
							| 74 | 73 | ad2antrr |  |-  ( ( ( ph /\ r e. RR ) /\ ( ( F ` r ) = 0 /\ -. A = r ) ) -> F Fn CC ) | 
						
							| 75 |  | fniniseg |  |-  ( F Fn CC -> ( r e. ( `' F " { 0 } ) <-> ( r e. CC /\ ( F ` r ) = 0 ) ) ) | 
						
							| 76 | 74 75 | syl |  |-  ( ( ( ph /\ r e. RR ) /\ ( ( F ` r ) = 0 /\ -. A = r ) ) -> ( r e. ( `' F " { 0 } ) <-> ( r e. CC /\ ( F ` r ) = 0 ) ) ) | 
						
							| 77 | 69 70 76 | mpbir2and |  |-  ( ( ( ph /\ r e. RR ) /\ ( ( F ` r ) = 0 /\ -. A = r ) ) -> r e. ( `' F " { 0 } ) ) | 
						
							| 78 |  | eqid |  |-  ( abs ` ( A - r ) ) = ( abs ` ( A - r ) ) | 
						
							| 79 |  | oveq2 |  |-  ( b = r -> ( A - b ) = ( A - r ) ) | 
						
							| 80 | 79 | fveq2d |  |-  ( b = r -> ( abs ` ( A - b ) ) = ( abs ` ( A - r ) ) ) | 
						
							| 81 | 80 | rspceeqv |  |-  ( ( r e. ( `' F " { 0 } ) /\ ( abs ` ( A - r ) ) = ( abs ` ( A - r ) ) ) -> E. b e. ( `' F " { 0 } ) ( abs ` ( A - r ) ) = ( abs ` ( A - b ) ) ) | 
						
							| 82 | 77 78 81 | sylancl |  |-  ( ( ( ph /\ r e. RR ) /\ ( ( F ` r ) = 0 /\ -. A = r ) ) -> E. b e. ( `' F " { 0 } ) ( abs ` ( A - r ) ) = ( abs ` ( A - b ) ) ) | 
						
							| 83 | 55 68 82 | elrabd |  |-  ( ( ( ph /\ r e. RR ) /\ ( ( F ` r ) = 0 /\ -. A = r ) ) -> ( abs ` ( A - r ) ) e. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) | 
						
							| 84 |  | elun2 |  |-  ( ( abs ` ( A - r ) ) e. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } -> ( abs ` ( A - r ) ) e. ( { 1 } u. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) ) | 
						
							| 85 | 83 84 | syl |  |-  ( ( ( ph /\ r e. RR ) /\ ( ( F ` r ) = 0 /\ -. A = r ) ) -> ( abs ` ( A - r ) ) e. ( { 1 } u. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) ) | 
						
							| 86 |  | infrelb |  |-  ( ( ( { 1 } u. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) C_ RR /\ E. c e. RR A. d e. ( { 1 } u. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) c <_ d /\ ( abs ` ( A - r ) ) e. ( { 1 } u. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) ) -> inf ( ( { 1 } u. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) , RR , < ) <_ ( abs ` ( A - r ) ) ) | 
						
							| 87 | 38 53 85 86 | mp3an12i |  |-  ( ( ( ph /\ r e. RR ) /\ ( ( F ` r ) = 0 /\ -. A = r ) ) -> inf ( ( { 1 } u. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) , RR , < ) <_ ( abs ` ( A - r ) ) ) | 
						
							| 88 | 87 | expr |  |-  ( ( ( ph /\ r e. RR ) /\ ( F ` r ) = 0 ) -> ( -. A = r -> inf ( ( { 1 } u. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) , RR , < ) <_ ( abs ` ( A - r ) ) ) ) | 
						
							| 89 | 88 | orrd |  |-  ( ( ( ph /\ r e. RR ) /\ ( F ` r ) = 0 ) -> ( A = r \/ inf ( ( { 1 } u. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) , RR , < ) <_ ( abs ` ( A - r ) ) ) ) | 
						
							| 90 | 89 | ex |  |-  ( ( ph /\ r e. RR ) -> ( ( F ` r ) = 0 -> ( A = r \/ inf ( ( { 1 } u. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) , RR , < ) <_ ( abs ` ( A - r ) ) ) ) ) | 
						
							| 91 | 90 | ralrimiva |  |-  ( ph -> A. r e. RR ( ( F ` r ) = 0 -> ( A = r \/ inf ( ( { 1 } u. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) , RR , < ) <_ ( abs ` ( A - r ) ) ) ) ) | 
						
							| 92 |  | breq1 |  |-  ( x = inf ( ( { 1 } u. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) , RR , < ) -> ( x <_ ( abs ` ( A - r ) ) <-> inf ( ( { 1 } u. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) , RR , < ) <_ ( abs ` ( A - r ) ) ) ) | 
						
							| 93 | 92 | orbi2d |  |-  ( x = inf ( ( { 1 } u. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) , RR , < ) -> ( ( A = r \/ x <_ ( abs ` ( A - r ) ) ) <-> ( A = r \/ inf ( ( { 1 } u. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) , RR , < ) <_ ( abs ` ( A - r ) ) ) ) ) | 
						
							| 94 | 93 | imbi2d |  |-  ( x = inf ( ( { 1 } u. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) , RR , < ) -> ( ( ( F ` r ) = 0 -> ( A = r \/ x <_ ( abs ` ( A - r ) ) ) ) <-> ( ( F ` r ) = 0 -> ( A = r \/ inf ( ( { 1 } u. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) , RR , < ) <_ ( abs ` ( A - r ) ) ) ) ) ) | 
						
							| 95 | 94 | ralbidv |  |-  ( x = inf ( ( { 1 } u. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) , RR , < ) -> ( A. r e. RR ( ( F ` r ) = 0 -> ( A = r \/ x <_ ( abs ` ( A - r ) ) ) ) <-> A. r e. RR ( ( F ` r ) = 0 -> ( A = r \/ inf ( ( { 1 } u. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) , RR , < ) <_ ( abs ` ( A - r ) ) ) ) ) ) | 
						
							| 96 | 95 | rspcev |  |-  ( ( inf ( ( { 1 } u. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) , RR , < ) e. RR+ /\ A. r e. RR ( ( F ` r ) = 0 -> ( A = r \/ inf ( ( { 1 } u. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) , RR , < ) <_ ( abs ` ( A - r ) ) ) ) ) -> E. x e. RR+ A. r e. RR ( ( F ` r ) = 0 -> ( A = r \/ x <_ ( abs ` ( A - r ) ) ) ) ) | 
						
							| 97 | 42 91 96 | syl2anc |  |-  ( ph -> E. x e. RR+ A. r e. RR ( ( F ` r ) = 0 -> ( A = r \/ x <_ ( abs ` ( A - r ) ) ) ) ) | 
						
							| 98 |  | fveqeq2 |  |-  ( r = ( p / q ) -> ( ( F ` r ) = 0 <-> ( F ` ( p / q ) ) = 0 ) ) | 
						
							| 99 |  | eqeq2 |  |-  ( r = ( p / q ) -> ( A = r <-> A = ( p / q ) ) ) | 
						
							| 100 |  | oveq2 |  |-  ( r = ( p / q ) -> ( A - r ) = ( A - ( p / q ) ) ) | 
						
							| 101 | 100 | fveq2d |  |-  ( r = ( p / q ) -> ( abs ` ( A - r ) ) = ( abs ` ( A - ( p / q ) ) ) ) | 
						
							| 102 | 101 | breq2d |  |-  ( r = ( p / q ) -> ( x <_ ( abs ` ( A - r ) ) <-> x <_ ( abs ` ( A - ( p / q ) ) ) ) ) | 
						
							| 103 | 99 102 | orbi12d |  |-  ( r = ( p / q ) -> ( ( A = r \/ x <_ ( abs ` ( A - r ) ) ) <-> ( A = ( p / q ) \/ x <_ ( abs ` ( A - ( p / q ) ) ) ) ) ) | 
						
							| 104 | 98 103 | imbi12d |  |-  ( r = ( p / q ) -> ( ( ( F ` r ) = 0 -> ( A = r \/ x <_ ( abs ` ( A - r ) ) ) ) <-> ( ( F ` ( p / q ) ) = 0 -> ( A = ( p / q ) \/ x <_ ( abs ` ( A - ( p / q ) ) ) ) ) ) ) | 
						
							| 105 | 104 | rspcv |  |-  ( ( p / q ) e. RR -> ( A. r e. RR ( ( F ` r ) = 0 -> ( A = r \/ x <_ ( abs ` ( A - r ) ) ) ) -> ( ( F ` ( p / q ) ) = 0 -> ( A = ( p / q ) \/ x <_ ( abs ` ( A - ( p / q ) ) ) ) ) ) ) | 
						
							| 106 |  | znq |  |-  ( ( p e. ZZ /\ q e. NN ) -> ( p / q ) e. QQ ) | 
						
							| 107 |  | qre |  |-  ( ( p / q ) e. QQ -> ( p / q ) e. RR ) | 
						
							| 108 | 106 107 | syl |  |-  ( ( p e. ZZ /\ q e. NN ) -> ( p / q ) e. RR ) | 
						
							| 109 | 105 108 | syl11 |  |-  ( A. r e. RR ( ( F ` r ) = 0 -> ( A = r \/ x <_ ( abs ` ( A - r ) ) ) ) -> ( ( p e. ZZ /\ q e. NN ) -> ( ( F ` ( p / q ) ) = 0 -> ( A = ( p / q ) \/ x <_ ( abs ` ( A - ( p / q ) ) ) ) ) ) ) | 
						
							| 110 | 109 | ralrimivv |  |-  ( A. r e. RR ( ( F ` r ) = 0 -> ( A = r \/ x <_ ( abs ` ( A - r ) ) ) ) -> A. p e. ZZ A. q e. NN ( ( F ` ( p / q ) ) = 0 -> ( A = ( p / q ) \/ x <_ ( abs ` ( A - ( p / q ) ) ) ) ) ) | 
						
							| 111 | 110 | reximi |  |-  ( E. x e. RR+ A. r e. RR ( ( F ` r ) = 0 -> ( A = r \/ x <_ ( abs ` ( A - r ) ) ) ) -> E. x e. RR+ A. p e. ZZ A. q e. NN ( ( F ` ( p / q ) ) = 0 -> ( A = ( p / q ) \/ x <_ ( abs ` ( A - ( p / q ) ) ) ) ) ) | 
						
							| 112 | 97 111 | syl |  |-  ( ph -> E. x e. RR+ A. p e. ZZ A. q e. NN ( ( F ` ( p / q ) ) = 0 -> ( A = ( p / q ) \/ x <_ ( abs ` ( A - ( p / q ) ) ) ) ) ) | 
						
							| 113 |  | simplr |  |-  ( ( ( ph /\ x e. RR+ ) /\ ( p e. ZZ /\ q e. NN ) ) -> x e. RR+ ) | 
						
							| 114 |  | simprr |  |-  ( ( ( ph /\ x e. RR+ ) /\ ( p e. ZZ /\ q e. NN ) ) -> q e. NN ) | 
						
							| 115 | 3 | nnnn0d |  |-  ( ph -> N e. NN0 ) | 
						
							| 116 | 115 | ad2antrr |  |-  ( ( ( ph /\ x e. RR+ ) /\ ( p e. ZZ /\ q e. NN ) ) -> N e. NN0 ) | 
						
							| 117 | 114 116 | nnexpcld |  |-  ( ( ( ph /\ x e. RR+ ) /\ ( p e. ZZ /\ q e. NN ) ) -> ( q ^ N ) e. NN ) | 
						
							| 118 | 117 | nnrpd |  |-  ( ( ( ph /\ x e. RR+ ) /\ ( p e. ZZ /\ q e. NN ) ) -> ( q ^ N ) e. RR+ ) | 
						
							| 119 | 113 118 | rpdivcld |  |-  ( ( ( ph /\ x e. RR+ ) /\ ( p e. ZZ /\ q e. NN ) ) -> ( x / ( q ^ N ) ) e. RR+ ) | 
						
							| 120 | 119 | rpred |  |-  ( ( ( ph /\ x e. RR+ ) /\ ( p e. ZZ /\ q e. NN ) ) -> ( x / ( q ^ N ) ) e. RR ) | 
						
							| 121 | 120 | adantr |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ ( p e. ZZ /\ q e. NN ) ) /\ x <_ ( abs ` ( A - ( p / q ) ) ) ) -> ( x / ( q ^ N ) ) e. RR ) | 
						
							| 122 |  | simpllr |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ ( p e. ZZ /\ q e. NN ) ) /\ x <_ ( abs ` ( A - ( p / q ) ) ) ) -> x e. RR+ ) | 
						
							| 123 | 122 | rpred |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ ( p e. ZZ /\ q e. NN ) ) /\ x <_ ( abs ` ( A - ( p / q ) ) ) ) -> x e. RR ) | 
						
							| 124 | 4 | ad2antrr |  |-  ( ( ( ph /\ x e. RR+ ) /\ ( p e. ZZ /\ q e. NN ) ) -> A e. RR ) | 
						
							| 125 | 108 | adantl |  |-  ( ( ( ph /\ x e. RR+ ) /\ ( p e. ZZ /\ q e. NN ) ) -> ( p / q ) e. RR ) | 
						
							| 126 | 124 125 | resubcld |  |-  ( ( ( ph /\ x e. RR+ ) /\ ( p e. ZZ /\ q e. NN ) ) -> ( A - ( p / q ) ) e. RR ) | 
						
							| 127 | 126 | recnd |  |-  ( ( ( ph /\ x e. RR+ ) /\ ( p e. ZZ /\ q e. NN ) ) -> ( A - ( p / q ) ) e. CC ) | 
						
							| 128 | 127 | abscld |  |-  ( ( ( ph /\ x e. RR+ ) /\ ( p e. ZZ /\ q e. NN ) ) -> ( abs ` ( A - ( p / q ) ) ) e. RR ) | 
						
							| 129 | 128 | adantr |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ ( p e. ZZ /\ q e. NN ) ) /\ x <_ ( abs ` ( A - ( p / q ) ) ) ) -> ( abs ` ( A - ( p / q ) ) ) e. RR ) | 
						
							| 130 |  | rpre |  |-  ( x e. RR+ -> x e. RR ) | 
						
							| 131 | 130 | ad2antlr |  |-  ( ( ( ph /\ x e. RR+ ) /\ ( p e. ZZ /\ q e. NN ) ) -> x e. RR ) | 
						
							| 132 | 113 | rpcnne0d |  |-  ( ( ( ph /\ x e. RR+ ) /\ ( p e. ZZ /\ q e. NN ) ) -> ( x e. CC /\ x =/= 0 ) ) | 
						
							| 133 |  | divid |  |-  ( ( x e. CC /\ x =/= 0 ) -> ( x / x ) = 1 ) | 
						
							| 134 | 132 133 | syl |  |-  ( ( ( ph /\ x e. RR+ ) /\ ( p e. ZZ /\ q e. NN ) ) -> ( x / x ) = 1 ) | 
						
							| 135 | 117 | nnge1d |  |-  ( ( ( ph /\ x e. RR+ ) /\ ( p e. ZZ /\ q e. NN ) ) -> 1 <_ ( q ^ N ) ) | 
						
							| 136 | 134 135 | eqbrtrd |  |-  ( ( ( ph /\ x e. RR+ ) /\ ( p e. ZZ /\ q e. NN ) ) -> ( x / x ) <_ ( q ^ N ) ) | 
						
							| 137 | 131 113 118 136 | lediv23d |  |-  ( ( ( ph /\ x e. RR+ ) /\ ( p e. ZZ /\ q e. NN ) ) -> ( x / ( q ^ N ) ) <_ x ) | 
						
							| 138 | 137 | adantr |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ ( p e. ZZ /\ q e. NN ) ) /\ x <_ ( abs ` ( A - ( p / q ) ) ) ) -> ( x / ( q ^ N ) ) <_ x ) | 
						
							| 139 |  | simpr |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ ( p e. ZZ /\ q e. NN ) ) /\ x <_ ( abs ` ( A - ( p / q ) ) ) ) -> x <_ ( abs ` ( A - ( p / q ) ) ) ) | 
						
							| 140 | 121 123 129 138 139 | letrd |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ ( p e. ZZ /\ q e. NN ) ) /\ x <_ ( abs ` ( A - ( p / q ) ) ) ) -> ( x / ( q ^ N ) ) <_ ( abs ` ( A - ( p / q ) ) ) ) | 
						
							| 141 | 140 | ex |  |-  ( ( ( ph /\ x e. RR+ ) /\ ( p e. ZZ /\ q e. NN ) ) -> ( x <_ ( abs ` ( A - ( p / q ) ) ) -> ( x / ( q ^ N ) ) <_ ( abs ` ( A - ( p / q ) ) ) ) ) | 
						
							| 142 | 141 | orim2d |  |-  ( ( ( ph /\ x e. RR+ ) /\ ( p e. ZZ /\ q e. NN ) ) -> ( ( A = ( p / q ) \/ x <_ ( abs ` ( A - ( p / q ) ) ) ) -> ( A = ( p / q ) \/ ( x / ( q ^ N ) ) <_ ( abs ` ( A - ( p / q ) ) ) ) ) ) | 
						
							| 143 | 142 | imim2d |  |-  ( ( ( ph /\ x e. RR+ ) /\ ( p e. ZZ /\ q e. NN ) ) -> ( ( ( F ` ( p / q ) ) = 0 -> ( A = ( p / q ) \/ x <_ ( abs ` ( A - ( p / q ) ) ) ) ) -> ( ( F ` ( p / q ) ) = 0 -> ( A = ( p / q ) \/ ( x / ( q ^ N ) ) <_ ( abs ` ( A - ( p / q ) ) ) ) ) ) ) | 
						
							| 144 | 143 | ralimdvva |  |-  ( ( ph /\ x e. RR+ ) -> ( A. p e. ZZ A. q e. NN ( ( F ` ( p / q ) ) = 0 -> ( A = ( p / q ) \/ x <_ ( abs ` ( A - ( p / q ) ) ) ) ) -> A. p e. ZZ A. q e. NN ( ( F ` ( p / q ) ) = 0 -> ( A = ( p / q ) \/ ( x / ( q ^ N ) ) <_ ( abs ` ( A - ( p / q ) ) ) ) ) ) ) | 
						
							| 145 | 144 | reximdva |  |-  ( ph -> ( E. x e. RR+ A. p e. ZZ A. q e. NN ( ( F ` ( p / q ) ) = 0 -> ( A = ( p / q ) \/ x <_ ( abs ` ( A - ( p / q ) ) ) ) ) -> E. x e. RR+ A. p e. ZZ A. q e. NN ( ( F ` ( p / q ) ) = 0 -> ( A = ( p / q ) \/ ( x / ( q ^ N ) ) <_ ( abs ` ( A - ( p / q ) ) ) ) ) ) ) | 
						
							| 146 | 112 145 | mpd |  |-  ( ph -> E. x e. RR+ A. p e. ZZ A. q e. NN ( ( F ` ( p / q ) ) = 0 -> ( A = ( p / q ) \/ ( x / ( q ^ N ) ) <_ ( abs ` ( A - ( p / q ) ) ) ) ) ) |