| Step | Hyp | Ref | Expression | 
						
							| 1 |  | aalioulem2.a |  |-  N = ( deg ` F ) | 
						
							| 2 |  | aalioulem2.b |  |-  ( ph -> F e. ( Poly ` ZZ ) ) | 
						
							| 3 |  | aalioulem2.c |  |-  ( ph -> N e. NN ) | 
						
							| 4 |  | aalioulem2.d |  |-  ( ph -> A e. RR ) | 
						
							| 5 |  | aalioulem3.e |  |-  ( ph -> ( F ` A ) = 0 ) | 
						
							| 6 |  | 1re |  |-  1 e. RR | 
						
							| 7 |  | resubcl |  |-  ( ( A e. RR /\ 1 e. RR ) -> ( A - 1 ) e. RR ) | 
						
							| 8 | 4 6 7 | sylancl |  |-  ( ph -> ( A - 1 ) e. RR ) | 
						
							| 9 |  | peano2re |  |-  ( A e. RR -> ( A + 1 ) e. RR ) | 
						
							| 10 | 4 9 | syl |  |-  ( ph -> ( A + 1 ) e. RR ) | 
						
							| 11 |  | reelprrecn |  |-  RR e. { RR , CC } | 
						
							| 12 |  | ssid |  |-  CC C_ CC | 
						
							| 13 |  | fncpn |  |-  ( CC C_ CC -> ( C^n ` CC ) Fn NN0 ) | 
						
							| 14 | 12 13 | ax-mp |  |-  ( C^n ` CC ) Fn NN0 | 
						
							| 15 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 16 |  | fnfvelrn |  |-  ( ( ( C^n ` CC ) Fn NN0 /\ 1 e. NN0 ) -> ( ( C^n ` CC ) ` 1 ) e. ran ( C^n ` CC ) ) | 
						
							| 17 | 14 15 16 | mp2an |  |-  ( ( C^n ` CC ) ` 1 ) e. ran ( C^n ` CC ) | 
						
							| 18 |  | intss1 |  |-  ( ( ( C^n ` CC ) ` 1 ) e. ran ( C^n ` CC ) -> |^| ran ( C^n ` CC ) C_ ( ( C^n ` CC ) ` 1 ) ) | 
						
							| 19 | 17 18 | ax-mp |  |-  |^| ran ( C^n ` CC ) C_ ( ( C^n ` CC ) ` 1 ) | 
						
							| 20 |  | plycpn |  |-  ( F e. ( Poly ` ZZ ) -> F e. |^| ran ( C^n ` CC ) ) | 
						
							| 21 | 2 20 | syl |  |-  ( ph -> F e. |^| ran ( C^n ` CC ) ) | 
						
							| 22 | 19 21 | sselid |  |-  ( ph -> F e. ( ( C^n ` CC ) ` 1 ) ) | 
						
							| 23 |  | cpnres |  |-  ( ( RR e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` 1 ) ) -> ( F |` RR ) e. ( ( C^n ` RR ) ` 1 ) ) | 
						
							| 24 | 11 22 23 | sylancr |  |-  ( ph -> ( F |` RR ) e. ( ( C^n ` RR ) ` 1 ) ) | 
						
							| 25 |  | df-ima |  |-  ( F " RR ) = ran ( F |` RR ) | 
						
							| 26 |  | zssre |  |-  ZZ C_ RR | 
						
							| 27 |  | ax-resscn |  |-  RR C_ CC | 
						
							| 28 |  | plyss |  |-  ( ( ZZ C_ RR /\ RR C_ CC ) -> ( Poly ` ZZ ) C_ ( Poly ` RR ) ) | 
						
							| 29 | 26 27 28 | mp2an |  |-  ( Poly ` ZZ ) C_ ( Poly ` RR ) | 
						
							| 30 | 29 2 | sselid |  |-  ( ph -> F e. ( Poly ` RR ) ) | 
						
							| 31 |  | plyreres |  |-  ( F e. ( Poly ` RR ) -> ( F |` RR ) : RR --> RR ) | 
						
							| 32 | 30 31 | syl |  |-  ( ph -> ( F |` RR ) : RR --> RR ) | 
						
							| 33 | 32 | frnd |  |-  ( ph -> ran ( F |` RR ) C_ RR ) | 
						
							| 34 | 25 33 | eqsstrid |  |-  ( ph -> ( F " RR ) C_ RR ) | 
						
							| 35 |  | iccssre |  |-  ( ( ( A - 1 ) e. RR /\ ( A + 1 ) e. RR ) -> ( ( A - 1 ) [,] ( A + 1 ) ) C_ RR ) | 
						
							| 36 | 8 10 35 | syl2anc |  |-  ( ph -> ( ( A - 1 ) [,] ( A + 1 ) ) C_ RR ) | 
						
							| 37 | 36 27 | sstrdi |  |-  ( ph -> ( ( A - 1 ) [,] ( A + 1 ) ) C_ CC ) | 
						
							| 38 |  | plyf |  |-  ( F e. ( Poly ` ZZ ) -> F : CC --> CC ) | 
						
							| 39 | 2 38 | syl |  |-  ( ph -> F : CC --> CC ) | 
						
							| 40 | 39 | fdmd |  |-  ( ph -> dom F = CC ) | 
						
							| 41 | 37 40 | sseqtrrd |  |-  ( ph -> ( ( A - 1 ) [,] ( A + 1 ) ) C_ dom F ) | 
						
							| 42 | 8 10 24 34 41 | c1lip3 |  |-  ( ph -> E. a e. RR A. b e. ( ( A - 1 ) [,] ( A + 1 ) ) A. c e. ( ( A - 1 ) [,] ( A + 1 ) ) ( abs ` ( ( F ` c ) - ( F ` b ) ) ) <_ ( a x. ( abs ` ( c - b ) ) ) ) | 
						
							| 43 |  | simp2 |  |-  ( ( ( ph /\ a e. RR ) /\ r e. RR /\ ( abs ` ( A - r ) ) <_ 1 ) -> r e. RR ) | 
						
							| 44 | 43 | recnd |  |-  ( ( ( ph /\ a e. RR ) /\ r e. RR /\ ( abs ` ( A - r ) ) <_ 1 ) -> r e. CC ) | 
						
							| 45 | 4 | adantr |  |-  ( ( ph /\ a e. RR ) -> A e. RR ) | 
						
							| 46 | 45 | 3ad2ant1 |  |-  ( ( ( ph /\ a e. RR ) /\ r e. RR /\ ( abs ` ( A - r ) ) <_ 1 ) -> A e. RR ) | 
						
							| 47 | 46 | recnd |  |-  ( ( ( ph /\ a e. RR ) /\ r e. RR /\ ( abs ` ( A - r ) ) <_ 1 ) -> A e. CC ) | 
						
							| 48 | 44 47 | abssubd |  |-  ( ( ( ph /\ a e. RR ) /\ r e. RR /\ ( abs ` ( A - r ) ) <_ 1 ) -> ( abs ` ( r - A ) ) = ( abs ` ( A - r ) ) ) | 
						
							| 49 |  | simp3 |  |-  ( ( ( ph /\ a e. RR ) /\ r e. RR /\ ( abs ` ( A - r ) ) <_ 1 ) -> ( abs ` ( A - r ) ) <_ 1 ) | 
						
							| 50 | 48 49 | eqbrtrd |  |-  ( ( ( ph /\ a e. RR ) /\ r e. RR /\ ( abs ` ( A - r ) ) <_ 1 ) -> ( abs ` ( r - A ) ) <_ 1 ) | 
						
							| 51 |  | 1red |  |-  ( ( ( ph /\ a e. RR ) /\ r e. RR /\ ( abs ` ( A - r ) ) <_ 1 ) -> 1 e. RR ) | 
						
							| 52 |  | elicc4abs |  |-  ( ( A e. RR /\ 1 e. RR /\ r e. RR ) -> ( r e. ( ( A - 1 ) [,] ( A + 1 ) ) <-> ( abs ` ( r - A ) ) <_ 1 ) ) | 
						
							| 53 | 46 51 43 52 | syl3anc |  |-  ( ( ( ph /\ a e. RR ) /\ r e. RR /\ ( abs ` ( A - r ) ) <_ 1 ) -> ( r e. ( ( A - 1 ) [,] ( A + 1 ) ) <-> ( abs ` ( r - A ) ) <_ 1 ) ) | 
						
							| 54 | 50 53 | mpbird |  |-  ( ( ( ph /\ a e. RR ) /\ r e. RR /\ ( abs ` ( A - r ) ) <_ 1 ) -> r e. ( ( A - 1 ) [,] ( A + 1 ) ) ) | 
						
							| 55 | 4 | recnd |  |-  ( ph -> A e. CC ) | 
						
							| 56 | 55 | subidd |  |-  ( ph -> ( A - A ) = 0 ) | 
						
							| 57 | 56 | fveq2d |  |-  ( ph -> ( abs ` ( A - A ) ) = ( abs ` 0 ) ) | 
						
							| 58 |  | abs0 |  |-  ( abs ` 0 ) = 0 | 
						
							| 59 |  | 0le1 |  |-  0 <_ 1 | 
						
							| 60 | 58 59 | eqbrtri |  |-  ( abs ` 0 ) <_ 1 | 
						
							| 61 | 57 60 | eqbrtrdi |  |-  ( ph -> ( abs ` ( A - A ) ) <_ 1 ) | 
						
							| 62 |  | 1red |  |-  ( ph -> 1 e. RR ) | 
						
							| 63 |  | elicc4abs |  |-  ( ( A e. RR /\ 1 e. RR /\ A e. RR ) -> ( A e. ( ( A - 1 ) [,] ( A + 1 ) ) <-> ( abs ` ( A - A ) ) <_ 1 ) ) | 
						
							| 64 | 4 62 4 63 | syl3anc |  |-  ( ph -> ( A e. ( ( A - 1 ) [,] ( A + 1 ) ) <-> ( abs ` ( A - A ) ) <_ 1 ) ) | 
						
							| 65 | 61 64 | mpbird |  |-  ( ph -> A e. ( ( A - 1 ) [,] ( A + 1 ) ) ) | 
						
							| 66 | 65 | adantr |  |-  ( ( ph /\ a e. RR ) -> A e. ( ( A - 1 ) [,] ( A + 1 ) ) ) | 
						
							| 67 | 66 | 3ad2ant1 |  |-  ( ( ( ph /\ a e. RR ) /\ r e. RR /\ ( abs ` ( A - r ) ) <_ 1 ) -> A e. ( ( A - 1 ) [,] ( A + 1 ) ) ) | 
						
							| 68 |  | fveq2 |  |-  ( b = r -> ( F ` b ) = ( F ` r ) ) | 
						
							| 69 | 68 | oveq2d |  |-  ( b = r -> ( ( F ` c ) - ( F ` b ) ) = ( ( F ` c ) - ( F ` r ) ) ) | 
						
							| 70 | 69 | fveq2d |  |-  ( b = r -> ( abs ` ( ( F ` c ) - ( F ` b ) ) ) = ( abs ` ( ( F ` c ) - ( F ` r ) ) ) ) | 
						
							| 71 |  | oveq2 |  |-  ( b = r -> ( c - b ) = ( c - r ) ) | 
						
							| 72 | 71 | fveq2d |  |-  ( b = r -> ( abs ` ( c - b ) ) = ( abs ` ( c - r ) ) ) | 
						
							| 73 | 72 | oveq2d |  |-  ( b = r -> ( a x. ( abs ` ( c - b ) ) ) = ( a x. ( abs ` ( c - r ) ) ) ) | 
						
							| 74 | 70 73 | breq12d |  |-  ( b = r -> ( ( abs ` ( ( F ` c ) - ( F ` b ) ) ) <_ ( a x. ( abs ` ( c - b ) ) ) <-> ( abs ` ( ( F ` c ) - ( F ` r ) ) ) <_ ( a x. ( abs ` ( c - r ) ) ) ) ) | 
						
							| 75 |  | fveq2 |  |-  ( c = A -> ( F ` c ) = ( F ` A ) ) | 
						
							| 76 | 75 | fvoveq1d |  |-  ( c = A -> ( abs ` ( ( F ` c ) - ( F ` r ) ) ) = ( abs ` ( ( F ` A ) - ( F ` r ) ) ) ) | 
						
							| 77 |  | fvoveq1 |  |-  ( c = A -> ( abs ` ( c - r ) ) = ( abs ` ( A - r ) ) ) | 
						
							| 78 | 77 | oveq2d |  |-  ( c = A -> ( a x. ( abs ` ( c - r ) ) ) = ( a x. ( abs ` ( A - r ) ) ) ) | 
						
							| 79 | 76 78 | breq12d |  |-  ( c = A -> ( ( abs ` ( ( F ` c ) - ( F ` r ) ) ) <_ ( a x. ( abs ` ( c - r ) ) ) <-> ( abs ` ( ( F ` A ) - ( F ` r ) ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) | 
						
							| 80 | 74 79 | rspc2v |  |-  ( ( r e. ( ( A - 1 ) [,] ( A + 1 ) ) /\ A e. ( ( A - 1 ) [,] ( A + 1 ) ) ) -> ( A. b e. ( ( A - 1 ) [,] ( A + 1 ) ) A. c e. ( ( A - 1 ) [,] ( A + 1 ) ) ( abs ` ( ( F ` c ) - ( F ` b ) ) ) <_ ( a x. ( abs ` ( c - b ) ) ) -> ( abs ` ( ( F ` A ) - ( F ` r ) ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) | 
						
							| 81 | 54 67 80 | syl2anc |  |-  ( ( ( ph /\ a e. RR ) /\ r e. RR /\ ( abs ` ( A - r ) ) <_ 1 ) -> ( A. b e. ( ( A - 1 ) [,] ( A + 1 ) ) A. c e. ( ( A - 1 ) [,] ( A + 1 ) ) ( abs ` ( ( F ` c ) - ( F ` b ) ) ) <_ ( a x. ( abs ` ( c - b ) ) ) -> ( abs ` ( ( F ` A ) - ( F ` r ) ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) | 
						
							| 82 |  | simp1l |  |-  ( ( ( ph /\ a e. RR ) /\ r e. RR /\ ( abs ` ( A - r ) ) <_ 1 ) -> ph ) | 
						
							| 83 | 82 5 | syl |  |-  ( ( ( ph /\ a e. RR ) /\ r e. RR /\ ( abs ` ( A - r ) ) <_ 1 ) -> ( F ` A ) = 0 ) | 
						
							| 84 |  | 0cn |  |-  0 e. CC | 
						
							| 85 | 83 84 | eqeltrdi |  |-  ( ( ( ph /\ a e. RR ) /\ r e. RR /\ ( abs ` ( A - r ) ) <_ 1 ) -> ( F ` A ) e. CC ) | 
						
							| 86 | 39 | adantr |  |-  ( ( ph /\ a e. RR ) -> F : CC --> CC ) | 
						
							| 87 | 86 | 3ad2ant1 |  |-  ( ( ( ph /\ a e. RR ) /\ r e. RR /\ ( abs ` ( A - r ) ) <_ 1 ) -> F : CC --> CC ) | 
						
							| 88 | 87 44 | ffvelcdmd |  |-  ( ( ( ph /\ a e. RR ) /\ r e. RR /\ ( abs ` ( A - r ) ) <_ 1 ) -> ( F ` r ) e. CC ) | 
						
							| 89 | 85 88 | abssubd |  |-  ( ( ( ph /\ a e. RR ) /\ r e. RR /\ ( abs ` ( A - r ) ) <_ 1 ) -> ( abs ` ( ( F ` A ) - ( F ` r ) ) ) = ( abs ` ( ( F ` r ) - ( F ` A ) ) ) ) | 
						
							| 90 | 83 | oveq2d |  |-  ( ( ( ph /\ a e. RR ) /\ r e. RR /\ ( abs ` ( A - r ) ) <_ 1 ) -> ( ( F ` r ) - ( F ` A ) ) = ( ( F ` r ) - 0 ) ) | 
						
							| 91 | 88 | subid1d |  |-  ( ( ( ph /\ a e. RR ) /\ r e. RR /\ ( abs ` ( A - r ) ) <_ 1 ) -> ( ( F ` r ) - 0 ) = ( F ` r ) ) | 
						
							| 92 | 90 91 | eqtrd |  |-  ( ( ( ph /\ a e. RR ) /\ r e. RR /\ ( abs ` ( A - r ) ) <_ 1 ) -> ( ( F ` r ) - ( F ` A ) ) = ( F ` r ) ) | 
						
							| 93 | 92 | fveq2d |  |-  ( ( ( ph /\ a e. RR ) /\ r e. RR /\ ( abs ` ( A - r ) ) <_ 1 ) -> ( abs ` ( ( F ` r ) - ( F ` A ) ) ) = ( abs ` ( F ` r ) ) ) | 
						
							| 94 | 89 93 | eqtrd |  |-  ( ( ( ph /\ a e. RR ) /\ r e. RR /\ ( abs ` ( A - r ) ) <_ 1 ) -> ( abs ` ( ( F ` A ) - ( F ` r ) ) ) = ( abs ` ( F ` r ) ) ) | 
						
							| 95 | 94 | breq1d |  |-  ( ( ( ph /\ a e. RR ) /\ r e. RR /\ ( abs ` ( A - r ) ) <_ 1 ) -> ( ( abs ` ( ( F ` A ) - ( F ` r ) ) ) <_ ( a x. ( abs ` ( A - r ) ) ) <-> ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) | 
						
							| 96 | 81 95 | sylibd |  |-  ( ( ( ph /\ a e. RR ) /\ r e. RR /\ ( abs ` ( A - r ) ) <_ 1 ) -> ( A. b e. ( ( A - 1 ) [,] ( A + 1 ) ) A. c e. ( ( A - 1 ) [,] ( A + 1 ) ) ( abs ` ( ( F ` c ) - ( F ` b ) ) ) <_ ( a x. ( abs ` ( c - b ) ) ) -> ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) | 
						
							| 97 | 96 | 3exp |  |-  ( ( ph /\ a e. RR ) -> ( r e. RR -> ( ( abs ` ( A - r ) ) <_ 1 -> ( A. b e. ( ( A - 1 ) [,] ( A + 1 ) ) A. c e. ( ( A - 1 ) [,] ( A + 1 ) ) ( abs ` ( ( F ` c ) - ( F ` b ) ) ) <_ ( a x. ( abs ` ( c - b ) ) ) -> ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) ) ) | 
						
							| 98 | 97 | com34 |  |-  ( ( ph /\ a e. RR ) -> ( r e. RR -> ( A. b e. ( ( A - 1 ) [,] ( A + 1 ) ) A. c e. ( ( A - 1 ) [,] ( A + 1 ) ) ( abs ` ( ( F ` c ) - ( F ` b ) ) ) <_ ( a x. ( abs ` ( c - b ) ) ) -> ( ( abs ` ( A - r ) ) <_ 1 -> ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) ) ) | 
						
							| 99 | 98 | com23 |  |-  ( ( ph /\ a e. RR ) -> ( A. b e. ( ( A - 1 ) [,] ( A + 1 ) ) A. c e. ( ( A - 1 ) [,] ( A + 1 ) ) ( abs ` ( ( F ` c ) - ( F ` b ) ) ) <_ ( a x. ( abs ` ( c - b ) ) ) -> ( r e. RR -> ( ( abs ` ( A - r ) ) <_ 1 -> ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) ) ) | 
						
							| 100 | 99 | ralrimdv |  |-  ( ( ph /\ a e. RR ) -> ( A. b e. ( ( A - 1 ) [,] ( A + 1 ) ) A. c e. ( ( A - 1 ) [,] ( A + 1 ) ) ( abs ` ( ( F ` c ) - ( F ` b ) ) ) <_ ( a x. ( abs ` ( c - b ) ) ) -> A. r e. RR ( ( abs ` ( A - r ) ) <_ 1 -> ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) ) | 
						
							| 101 | 100 | reximdva |  |-  ( ph -> ( E. a e. RR A. b e. ( ( A - 1 ) [,] ( A + 1 ) ) A. c e. ( ( A - 1 ) [,] ( A + 1 ) ) ( abs ` ( ( F ` c ) - ( F ` b ) ) ) <_ ( a x. ( abs ` ( c - b ) ) ) -> E. a e. RR A. r e. RR ( ( abs ` ( A - r ) ) <_ 1 -> ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) ) | 
						
							| 102 | 42 101 | mpd |  |-  ( ph -> E. a e. RR A. r e. RR ( ( abs ` ( A - r ) ) <_ 1 -> ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) | 
						
							| 103 |  | 1rp |  |-  1 e. RR+ | 
						
							| 104 | 103 | a1i |  |-  ( ( ( ph /\ a e. RR ) /\ a = 0 ) -> 1 e. RR+ ) | 
						
							| 105 |  | recn |  |-  ( a e. RR -> a e. CC ) | 
						
							| 106 | 105 | adantl |  |-  ( ( ph /\ a e. RR ) -> a e. CC ) | 
						
							| 107 |  | neqne |  |-  ( -. a = 0 -> a =/= 0 ) | 
						
							| 108 |  | absrpcl |  |-  ( ( a e. CC /\ a =/= 0 ) -> ( abs ` a ) e. RR+ ) | 
						
							| 109 | 106 107 108 | syl2an |  |-  ( ( ( ph /\ a e. RR ) /\ -. a = 0 ) -> ( abs ` a ) e. RR+ ) | 
						
							| 110 | 109 | rpreccld |  |-  ( ( ( ph /\ a e. RR ) /\ -. a = 0 ) -> ( 1 / ( abs ` a ) ) e. RR+ ) | 
						
							| 111 | 104 110 | ifclda |  |-  ( ( ph /\ a e. RR ) -> if ( a = 0 , 1 , ( 1 / ( abs ` a ) ) ) e. RR+ ) | 
						
							| 112 |  | eqid |  |-  if ( a = 0 , 1 , ( 1 / ( abs ` a ) ) ) = if ( a = 0 , 1 , ( 1 / ( abs ` a ) ) ) | 
						
							| 113 |  | eqif |  |-  ( if ( a = 0 , 1 , ( 1 / ( abs ` a ) ) ) = if ( a = 0 , 1 , ( 1 / ( abs ` a ) ) ) <-> ( ( a = 0 /\ if ( a = 0 , 1 , ( 1 / ( abs ` a ) ) ) = 1 ) \/ ( -. a = 0 /\ if ( a = 0 , 1 , ( 1 / ( abs ` a ) ) ) = ( 1 / ( abs ` a ) ) ) ) ) | 
						
							| 114 | 112 113 | mpbi |  |-  ( ( a = 0 /\ if ( a = 0 , 1 , ( 1 / ( abs ` a ) ) ) = 1 ) \/ ( -. a = 0 /\ if ( a = 0 , 1 , ( 1 / ( abs ` a ) ) ) = ( 1 / ( abs ` a ) ) ) ) | 
						
							| 115 |  | simplrr |  |-  ( ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) /\ a = 0 ) -> ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) | 
						
							| 116 |  | oveq1 |  |-  ( a = 0 -> ( a x. ( abs ` ( A - r ) ) ) = ( 0 x. ( abs ` ( A - r ) ) ) ) | 
						
							| 117 | 116 | adantl |  |-  ( ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) /\ a = 0 ) -> ( a x. ( abs ` ( A - r ) ) ) = ( 0 x. ( abs ` ( A - r ) ) ) ) | 
						
							| 118 | 4 | ad2antrr |  |-  ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) -> A e. RR ) | 
						
							| 119 |  | simprl |  |-  ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) -> r e. RR ) | 
						
							| 120 | 118 119 | resubcld |  |-  ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) -> ( A - r ) e. RR ) | 
						
							| 121 | 120 | recnd |  |-  ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) -> ( A - r ) e. CC ) | 
						
							| 122 | 121 | abscld |  |-  ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) -> ( abs ` ( A - r ) ) e. RR ) | 
						
							| 123 | 122 | recnd |  |-  ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) -> ( abs ` ( A - r ) ) e. CC ) | 
						
							| 124 | 123 | adantr |  |-  ( ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) /\ a = 0 ) -> ( abs ` ( A - r ) ) e. CC ) | 
						
							| 125 | 124 | mul02d |  |-  ( ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) /\ a = 0 ) -> ( 0 x. ( abs ` ( A - r ) ) ) = 0 ) | 
						
							| 126 | 117 125 | eqtrd |  |-  ( ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) /\ a = 0 ) -> ( a x. ( abs ` ( A - r ) ) ) = 0 ) | 
						
							| 127 | 115 126 | breqtrd |  |-  ( ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) /\ a = 0 ) -> ( abs ` ( F ` r ) ) <_ 0 ) | 
						
							| 128 | 39 | ad2antrr |  |-  ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) -> F : CC --> CC ) | 
						
							| 129 | 119 | recnd |  |-  ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) -> r e. CC ) | 
						
							| 130 | 128 129 | ffvelcdmd |  |-  ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) -> ( F ` r ) e. CC ) | 
						
							| 131 | 130 | adantr |  |-  ( ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) /\ a = 0 ) -> ( F ` r ) e. CC ) | 
						
							| 132 | 131 | absge0d |  |-  ( ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) /\ a = 0 ) -> 0 <_ ( abs ` ( F ` r ) ) ) | 
						
							| 133 | 130 | abscld |  |-  ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) -> ( abs ` ( F ` r ) ) e. RR ) | 
						
							| 134 | 133 | adantr |  |-  ( ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) /\ a = 0 ) -> ( abs ` ( F ` r ) ) e. RR ) | 
						
							| 135 |  | 0re |  |-  0 e. RR | 
						
							| 136 |  | letri3 |  |-  ( ( ( abs ` ( F ` r ) ) e. RR /\ 0 e. RR ) -> ( ( abs ` ( F ` r ) ) = 0 <-> ( ( abs ` ( F ` r ) ) <_ 0 /\ 0 <_ ( abs ` ( F ` r ) ) ) ) ) | 
						
							| 137 | 134 135 136 | sylancl |  |-  ( ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) /\ a = 0 ) -> ( ( abs ` ( F ` r ) ) = 0 <-> ( ( abs ` ( F ` r ) ) <_ 0 /\ 0 <_ ( abs ` ( F ` r ) ) ) ) ) | 
						
							| 138 | 127 132 137 | mpbir2and |  |-  ( ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) /\ a = 0 ) -> ( abs ` ( F ` r ) ) = 0 ) | 
						
							| 139 | 138 | oveq2d |  |-  ( ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) /\ a = 0 ) -> ( 1 x. ( abs ` ( F ` r ) ) ) = ( 1 x. 0 ) ) | 
						
							| 140 |  | ax-1cn |  |-  1 e. CC | 
						
							| 141 | 140 | mul01i |  |-  ( 1 x. 0 ) = 0 | 
						
							| 142 | 139 141 | eqtrdi |  |-  ( ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) /\ a = 0 ) -> ( 1 x. ( abs ` ( F ` r ) ) ) = 0 ) | 
						
							| 143 | 121 | adantr |  |-  ( ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) /\ a = 0 ) -> ( A - r ) e. CC ) | 
						
							| 144 | 143 | absge0d |  |-  ( ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) /\ a = 0 ) -> 0 <_ ( abs ` ( A - r ) ) ) | 
						
							| 145 | 142 144 | eqbrtrd |  |-  ( ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) /\ a = 0 ) -> ( 1 x. ( abs ` ( F ` r ) ) ) <_ ( abs ` ( A - r ) ) ) | 
						
							| 146 |  | oveq1 |  |-  ( if ( a = 0 , 1 , ( 1 / ( abs ` a ) ) ) = 1 -> ( if ( a = 0 , 1 , ( 1 / ( abs ` a ) ) ) x. ( abs ` ( F ` r ) ) ) = ( 1 x. ( abs ` ( F ` r ) ) ) ) | 
						
							| 147 | 146 | breq1d |  |-  ( if ( a = 0 , 1 , ( 1 / ( abs ` a ) ) ) = 1 -> ( ( if ( a = 0 , 1 , ( 1 / ( abs ` a ) ) ) x. ( abs ` ( F ` r ) ) ) <_ ( abs ` ( A - r ) ) <-> ( 1 x. ( abs ` ( F ` r ) ) ) <_ ( abs ` ( A - r ) ) ) ) | 
						
							| 148 | 145 147 | syl5ibrcom |  |-  ( ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) /\ a = 0 ) -> ( if ( a = 0 , 1 , ( 1 / ( abs ` a ) ) ) = 1 -> ( if ( a = 0 , 1 , ( 1 / ( abs ` a ) ) ) x. ( abs ` ( F ` r ) ) ) <_ ( abs ` ( A - r ) ) ) ) | 
						
							| 149 | 148 | expimpd |  |-  ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) -> ( ( a = 0 /\ if ( a = 0 , 1 , ( 1 / ( abs ` a ) ) ) = 1 ) -> ( if ( a = 0 , 1 , ( 1 / ( abs ` a ) ) ) x. ( abs ` ( F ` r ) ) ) <_ ( abs ` ( A - r ) ) ) ) | 
						
							| 150 |  | df-ne |  |-  ( a =/= 0 <-> -. a = 0 ) | 
						
							| 151 | 133 | adantr |  |-  ( ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) /\ a =/= 0 ) -> ( abs ` ( F ` r ) ) e. RR ) | 
						
							| 152 | 151 | recnd |  |-  ( ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) /\ a =/= 0 ) -> ( abs ` ( F ` r ) ) e. CC ) | 
						
							| 153 |  | simpllr |  |-  ( ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) /\ a =/= 0 ) -> a e. RR ) | 
						
							| 154 | 153 | recnd |  |-  ( ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) /\ a =/= 0 ) -> a e. CC ) | 
						
							| 155 | 154 108 | sylancom |  |-  ( ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) /\ a =/= 0 ) -> ( abs ` a ) e. RR+ ) | 
						
							| 156 | 155 | rpcnne0d |  |-  ( ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) /\ a =/= 0 ) -> ( ( abs ` a ) e. CC /\ ( abs ` a ) =/= 0 ) ) | 
						
							| 157 |  | divrec2 |  |-  ( ( ( abs ` ( F ` r ) ) e. CC /\ ( abs ` a ) e. CC /\ ( abs ` a ) =/= 0 ) -> ( ( abs ` ( F ` r ) ) / ( abs ` a ) ) = ( ( 1 / ( abs ` a ) ) x. ( abs ` ( F ` r ) ) ) ) | 
						
							| 158 | 157 | 3expb |  |-  ( ( ( abs ` ( F ` r ) ) e. CC /\ ( ( abs ` a ) e. CC /\ ( abs ` a ) =/= 0 ) ) -> ( ( abs ` ( F ` r ) ) / ( abs ` a ) ) = ( ( 1 / ( abs ` a ) ) x. ( abs ` ( F ` r ) ) ) ) | 
						
							| 159 | 152 156 158 | syl2anc |  |-  ( ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) /\ a =/= 0 ) -> ( ( abs ` ( F ` r ) ) / ( abs ` a ) ) = ( ( 1 / ( abs ` a ) ) x. ( abs ` ( F ` r ) ) ) ) | 
						
							| 160 |  | simplr |  |-  ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) -> a e. RR ) | 
						
							| 161 | 160 122 | remulcld |  |-  ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) -> ( a x. ( abs ` ( A - r ) ) ) e. RR ) | 
						
							| 162 | 160 | recnd |  |-  ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) -> a e. CC ) | 
						
							| 163 | 162 | abscld |  |-  ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) -> ( abs ` a ) e. RR ) | 
						
							| 164 | 163 122 | remulcld |  |-  ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) -> ( ( abs ` a ) x. ( abs ` ( A - r ) ) ) e. RR ) | 
						
							| 165 |  | simprr |  |-  ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) -> ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) | 
						
							| 166 | 121 | absge0d |  |-  ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) -> 0 <_ ( abs ` ( A - r ) ) ) | 
						
							| 167 |  | leabs |  |-  ( a e. RR -> a <_ ( abs ` a ) ) | 
						
							| 168 | 167 | ad2antlr |  |-  ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) -> a <_ ( abs ` a ) ) | 
						
							| 169 | 160 163 122 166 168 | lemul1ad |  |-  ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) -> ( a x. ( abs ` ( A - r ) ) ) <_ ( ( abs ` a ) x. ( abs ` ( A - r ) ) ) ) | 
						
							| 170 | 133 161 164 165 169 | letrd |  |-  ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) -> ( abs ` ( F ` r ) ) <_ ( ( abs ` a ) x. ( abs ` ( A - r ) ) ) ) | 
						
							| 171 | 170 | adantr |  |-  ( ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) /\ a =/= 0 ) -> ( abs ` ( F ` r ) ) <_ ( ( abs ` a ) x. ( abs ` ( A - r ) ) ) ) | 
						
							| 172 | 122 | adantr |  |-  ( ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) /\ a =/= 0 ) -> ( abs ` ( A - r ) ) e. RR ) | 
						
							| 173 | 151 172 155 | ledivmuld |  |-  ( ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) /\ a =/= 0 ) -> ( ( ( abs ` ( F ` r ) ) / ( abs ` a ) ) <_ ( abs ` ( A - r ) ) <-> ( abs ` ( F ` r ) ) <_ ( ( abs ` a ) x. ( abs ` ( A - r ) ) ) ) ) | 
						
							| 174 | 171 173 | mpbird |  |-  ( ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) /\ a =/= 0 ) -> ( ( abs ` ( F ` r ) ) / ( abs ` a ) ) <_ ( abs ` ( A - r ) ) ) | 
						
							| 175 | 159 174 | eqbrtrrd |  |-  ( ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) /\ a =/= 0 ) -> ( ( 1 / ( abs ` a ) ) x. ( abs ` ( F ` r ) ) ) <_ ( abs ` ( A - r ) ) ) | 
						
							| 176 | 150 175 | sylan2br |  |-  ( ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) /\ -. a = 0 ) -> ( ( 1 / ( abs ` a ) ) x. ( abs ` ( F ` r ) ) ) <_ ( abs ` ( A - r ) ) ) | 
						
							| 177 |  | oveq1 |  |-  ( if ( a = 0 , 1 , ( 1 / ( abs ` a ) ) ) = ( 1 / ( abs ` a ) ) -> ( if ( a = 0 , 1 , ( 1 / ( abs ` a ) ) ) x. ( abs ` ( F ` r ) ) ) = ( ( 1 / ( abs ` a ) ) x. ( abs ` ( F ` r ) ) ) ) | 
						
							| 178 | 177 | breq1d |  |-  ( if ( a = 0 , 1 , ( 1 / ( abs ` a ) ) ) = ( 1 / ( abs ` a ) ) -> ( ( if ( a = 0 , 1 , ( 1 / ( abs ` a ) ) ) x. ( abs ` ( F ` r ) ) ) <_ ( abs ` ( A - r ) ) <-> ( ( 1 / ( abs ` a ) ) x. ( abs ` ( F ` r ) ) ) <_ ( abs ` ( A - r ) ) ) ) | 
						
							| 179 | 176 178 | syl5ibrcom |  |-  ( ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) /\ -. a = 0 ) -> ( if ( a = 0 , 1 , ( 1 / ( abs ` a ) ) ) = ( 1 / ( abs ` a ) ) -> ( if ( a = 0 , 1 , ( 1 / ( abs ` a ) ) ) x. ( abs ` ( F ` r ) ) ) <_ ( abs ` ( A - r ) ) ) ) | 
						
							| 180 | 179 | expimpd |  |-  ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) -> ( ( -. a = 0 /\ if ( a = 0 , 1 , ( 1 / ( abs ` a ) ) ) = ( 1 / ( abs ` a ) ) ) -> ( if ( a = 0 , 1 , ( 1 / ( abs ` a ) ) ) x. ( abs ` ( F ` r ) ) ) <_ ( abs ` ( A - r ) ) ) ) | 
						
							| 181 | 149 180 | jaod |  |-  ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) -> ( ( ( a = 0 /\ if ( a = 0 , 1 , ( 1 / ( abs ` a ) ) ) = 1 ) \/ ( -. a = 0 /\ if ( a = 0 , 1 , ( 1 / ( abs ` a ) ) ) = ( 1 / ( abs ` a ) ) ) ) -> ( if ( a = 0 , 1 , ( 1 / ( abs ` a ) ) ) x. ( abs ` ( F ` r ) ) ) <_ ( abs ` ( A - r ) ) ) ) | 
						
							| 182 | 114 181 | mpi |  |-  ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) -> ( if ( a = 0 , 1 , ( 1 / ( abs ` a ) ) ) x. ( abs ` ( F ` r ) ) ) <_ ( abs ` ( A - r ) ) ) | 
						
							| 183 | 182 | expr |  |-  ( ( ( ph /\ a e. RR ) /\ r e. RR ) -> ( ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) -> ( if ( a = 0 , 1 , ( 1 / ( abs ` a ) ) ) x. ( abs ` ( F ` r ) ) ) <_ ( abs ` ( A - r ) ) ) ) | 
						
							| 184 | 183 | imim2d |  |-  ( ( ( ph /\ a e. RR ) /\ r e. RR ) -> ( ( ( abs ` ( A - r ) ) <_ 1 -> ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) -> ( ( abs ` ( A - r ) ) <_ 1 -> ( if ( a = 0 , 1 , ( 1 / ( abs ` a ) ) ) x. ( abs ` ( F ` r ) ) ) <_ ( abs ` ( A - r ) ) ) ) ) | 
						
							| 185 | 184 | ralimdva |  |-  ( ( ph /\ a e. RR ) -> ( A. r e. RR ( ( abs ` ( A - r ) ) <_ 1 -> ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) -> A. r e. RR ( ( abs ` ( A - r ) ) <_ 1 -> ( if ( a = 0 , 1 , ( 1 / ( abs ` a ) ) ) x. ( abs ` ( F ` r ) ) ) <_ ( abs ` ( A - r ) ) ) ) ) | 
						
							| 186 |  | oveq1 |  |-  ( x = if ( a = 0 , 1 , ( 1 / ( abs ` a ) ) ) -> ( x x. ( abs ` ( F ` r ) ) ) = ( if ( a = 0 , 1 , ( 1 / ( abs ` a ) ) ) x. ( abs ` ( F ` r ) ) ) ) | 
						
							| 187 | 186 | breq1d |  |-  ( x = if ( a = 0 , 1 , ( 1 / ( abs ` a ) ) ) -> ( ( x x. ( abs ` ( F ` r ) ) ) <_ ( abs ` ( A - r ) ) <-> ( if ( a = 0 , 1 , ( 1 / ( abs ` a ) ) ) x. ( abs ` ( F ` r ) ) ) <_ ( abs ` ( A - r ) ) ) ) | 
						
							| 188 | 187 | imbi2d |  |-  ( x = if ( a = 0 , 1 , ( 1 / ( abs ` a ) ) ) -> ( ( ( abs ` ( A - r ) ) <_ 1 -> ( x x. ( abs ` ( F ` r ) ) ) <_ ( abs ` ( A - r ) ) ) <-> ( ( abs ` ( A - r ) ) <_ 1 -> ( if ( a = 0 , 1 , ( 1 / ( abs ` a ) ) ) x. ( abs ` ( F ` r ) ) ) <_ ( abs ` ( A - r ) ) ) ) ) | 
						
							| 189 | 188 | ralbidv |  |-  ( x = if ( a = 0 , 1 , ( 1 / ( abs ` a ) ) ) -> ( A. r e. RR ( ( abs ` ( A - r ) ) <_ 1 -> ( x x. ( abs ` ( F ` r ) ) ) <_ ( abs ` ( A - r ) ) ) <-> A. r e. RR ( ( abs ` ( A - r ) ) <_ 1 -> ( if ( a = 0 , 1 , ( 1 / ( abs ` a ) ) ) x. ( abs ` ( F ` r ) ) ) <_ ( abs ` ( A - r ) ) ) ) ) | 
						
							| 190 | 189 | rspcev |  |-  ( ( if ( a = 0 , 1 , ( 1 / ( abs ` a ) ) ) e. RR+ /\ A. r e. RR ( ( abs ` ( A - r ) ) <_ 1 -> ( if ( a = 0 , 1 , ( 1 / ( abs ` a ) ) ) x. ( abs ` ( F ` r ) ) ) <_ ( abs ` ( A - r ) ) ) ) -> E. x e. RR+ A. r e. RR ( ( abs ` ( A - r ) ) <_ 1 -> ( x x. ( abs ` ( F ` r ) ) ) <_ ( abs ` ( A - r ) ) ) ) | 
						
							| 191 | 111 185 190 | syl6an |  |-  ( ( ph /\ a e. RR ) -> ( A. r e. RR ( ( abs ` ( A - r ) ) <_ 1 -> ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) -> E. x e. RR+ A. r e. RR ( ( abs ` ( A - r ) ) <_ 1 -> ( x x. ( abs ` ( F ` r ) ) ) <_ ( abs ` ( A - r ) ) ) ) ) | 
						
							| 192 | 191 | rexlimdva |  |-  ( ph -> ( E. a e. RR A. r e. RR ( ( abs ` ( A - r ) ) <_ 1 -> ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) -> E. x e. RR+ A. r e. RR ( ( abs ` ( A - r ) ) <_ 1 -> ( x x. ( abs ` ( F ` r ) ) ) <_ ( abs ` ( A - r ) ) ) ) ) | 
						
							| 193 | 102 192 | mpd |  |-  ( ph -> E. x e. RR+ A. r e. RR ( ( abs ` ( A - r ) ) <_ 1 -> ( x x. ( abs ` ( F ` r ) ) ) <_ ( abs ` ( A - r ) ) ) ) |