Step |
Hyp |
Ref |
Expression |
1 |
|
aalioulem2.a |
|- N = ( deg ` F ) |
2 |
|
aalioulem2.b |
|- ( ph -> F e. ( Poly ` ZZ ) ) |
3 |
|
aalioulem2.c |
|- ( ph -> N e. NN ) |
4 |
|
aalioulem2.d |
|- ( ph -> A e. RR ) |
5 |
|
aalioulem3.e |
|- ( ph -> ( F ` A ) = 0 ) |
6 |
|
1re |
|- 1 e. RR |
7 |
|
resubcl |
|- ( ( A e. RR /\ 1 e. RR ) -> ( A - 1 ) e. RR ) |
8 |
4 6 7
|
sylancl |
|- ( ph -> ( A - 1 ) e. RR ) |
9 |
|
peano2re |
|- ( A e. RR -> ( A + 1 ) e. RR ) |
10 |
4 9
|
syl |
|- ( ph -> ( A + 1 ) e. RR ) |
11 |
|
reelprrecn |
|- RR e. { RR , CC } |
12 |
|
ssid |
|- CC C_ CC |
13 |
|
fncpn |
|- ( CC C_ CC -> ( C^n ` CC ) Fn NN0 ) |
14 |
12 13
|
ax-mp |
|- ( C^n ` CC ) Fn NN0 |
15 |
|
1nn0 |
|- 1 e. NN0 |
16 |
|
fnfvelrn |
|- ( ( ( C^n ` CC ) Fn NN0 /\ 1 e. NN0 ) -> ( ( C^n ` CC ) ` 1 ) e. ran ( C^n ` CC ) ) |
17 |
14 15 16
|
mp2an |
|- ( ( C^n ` CC ) ` 1 ) e. ran ( C^n ` CC ) |
18 |
|
intss1 |
|- ( ( ( C^n ` CC ) ` 1 ) e. ran ( C^n ` CC ) -> |^| ran ( C^n ` CC ) C_ ( ( C^n ` CC ) ` 1 ) ) |
19 |
17 18
|
ax-mp |
|- |^| ran ( C^n ` CC ) C_ ( ( C^n ` CC ) ` 1 ) |
20 |
|
plycpn |
|- ( F e. ( Poly ` ZZ ) -> F e. |^| ran ( C^n ` CC ) ) |
21 |
2 20
|
syl |
|- ( ph -> F e. |^| ran ( C^n ` CC ) ) |
22 |
19 21
|
sselid |
|- ( ph -> F e. ( ( C^n ` CC ) ` 1 ) ) |
23 |
|
cpnres |
|- ( ( RR e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` 1 ) ) -> ( F |` RR ) e. ( ( C^n ` RR ) ` 1 ) ) |
24 |
11 22 23
|
sylancr |
|- ( ph -> ( F |` RR ) e. ( ( C^n ` RR ) ` 1 ) ) |
25 |
|
df-ima |
|- ( F " RR ) = ran ( F |` RR ) |
26 |
|
zssre |
|- ZZ C_ RR |
27 |
|
ax-resscn |
|- RR C_ CC |
28 |
|
plyss |
|- ( ( ZZ C_ RR /\ RR C_ CC ) -> ( Poly ` ZZ ) C_ ( Poly ` RR ) ) |
29 |
26 27 28
|
mp2an |
|- ( Poly ` ZZ ) C_ ( Poly ` RR ) |
30 |
29 2
|
sselid |
|- ( ph -> F e. ( Poly ` RR ) ) |
31 |
|
plyreres |
|- ( F e. ( Poly ` RR ) -> ( F |` RR ) : RR --> RR ) |
32 |
30 31
|
syl |
|- ( ph -> ( F |` RR ) : RR --> RR ) |
33 |
32
|
frnd |
|- ( ph -> ran ( F |` RR ) C_ RR ) |
34 |
25 33
|
eqsstrid |
|- ( ph -> ( F " RR ) C_ RR ) |
35 |
|
iccssre |
|- ( ( ( A - 1 ) e. RR /\ ( A + 1 ) e. RR ) -> ( ( A - 1 ) [,] ( A + 1 ) ) C_ RR ) |
36 |
8 10 35
|
syl2anc |
|- ( ph -> ( ( A - 1 ) [,] ( A + 1 ) ) C_ RR ) |
37 |
36 27
|
sstrdi |
|- ( ph -> ( ( A - 1 ) [,] ( A + 1 ) ) C_ CC ) |
38 |
|
plyf |
|- ( F e. ( Poly ` ZZ ) -> F : CC --> CC ) |
39 |
2 38
|
syl |
|- ( ph -> F : CC --> CC ) |
40 |
39
|
fdmd |
|- ( ph -> dom F = CC ) |
41 |
37 40
|
sseqtrrd |
|- ( ph -> ( ( A - 1 ) [,] ( A + 1 ) ) C_ dom F ) |
42 |
8 10 24 34 41
|
c1lip3 |
|- ( ph -> E. a e. RR A. b e. ( ( A - 1 ) [,] ( A + 1 ) ) A. c e. ( ( A - 1 ) [,] ( A + 1 ) ) ( abs ` ( ( F ` c ) - ( F ` b ) ) ) <_ ( a x. ( abs ` ( c - b ) ) ) ) |
43 |
|
simp2 |
|- ( ( ( ph /\ a e. RR ) /\ r e. RR /\ ( abs ` ( A - r ) ) <_ 1 ) -> r e. RR ) |
44 |
43
|
recnd |
|- ( ( ( ph /\ a e. RR ) /\ r e. RR /\ ( abs ` ( A - r ) ) <_ 1 ) -> r e. CC ) |
45 |
4
|
adantr |
|- ( ( ph /\ a e. RR ) -> A e. RR ) |
46 |
45
|
3ad2ant1 |
|- ( ( ( ph /\ a e. RR ) /\ r e. RR /\ ( abs ` ( A - r ) ) <_ 1 ) -> A e. RR ) |
47 |
46
|
recnd |
|- ( ( ( ph /\ a e. RR ) /\ r e. RR /\ ( abs ` ( A - r ) ) <_ 1 ) -> A e. CC ) |
48 |
44 47
|
abssubd |
|- ( ( ( ph /\ a e. RR ) /\ r e. RR /\ ( abs ` ( A - r ) ) <_ 1 ) -> ( abs ` ( r - A ) ) = ( abs ` ( A - r ) ) ) |
49 |
|
simp3 |
|- ( ( ( ph /\ a e. RR ) /\ r e. RR /\ ( abs ` ( A - r ) ) <_ 1 ) -> ( abs ` ( A - r ) ) <_ 1 ) |
50 |
48 49
|
eqbrtrd |
|- ( ( ( ph /\ a e. RR ) /\ r e. RR /\ ( abs ` ( A - r ) ) <_ 1 ) -> ( abs ` ( r - A ) ) <_ 1 ) |
51 |
|
1red |
|- ( ( ( ph /\ a e. RR ) /\ r e. RR /\ ( abs ` ( A - r ) ) <_ 1 ) -> 1 e. RR ) |
52 |
|
elicc4abs |
|- ( ( A e. RR /\ 1 e. RR /\ r e. RR ) -> ( r e. ( ( A - 1 ) [,] ( A + 1 ) ) <-> ( abs ` ( r - A ) ) <_ 1 ) ) |
53 |
46 51 43 52
|
syl3anc |
|- ( ( ( ph /\ a e. RR ) /\ r e. RR /\ ( abs ` ( A - r ) ) <_ 1 ) -> ( r e. ( ( A - 1 ) [,] ( A + 1 ) ) <-> ( abs ` ( r - A ) ) <_ 1 ) ) |
54 |
50 53
|
mpbird |
|- ( ( ( ph /\ a e. RR ) /\ r e. RR /\ ( abs ` ( A - r ) ) <_ 1 ) -> r e. ( ( A - 1 ) [,] ( A + 1 ) ) ) |
55 |
4
|
recnd |
|- ( ph -> A e. CC ) |
56 |
55
|
subidd |
|- ( ph -> ( A - A ) = 0 ) |
57 |
56
|
fveq2d |
|- ( ph -> ( abs ` ( A - A ) ) = ( abs ` 0 ) ) |
58 |
|
abs0 |
|- ( abs ` 0 ) = 0 |
59 |
|
0le1 |
|- 0 <_ 1 |
60 |
58 59
|
eqbrtri |
|- ( abs ` 0 ) <_ 1 |
61 |
57 60
|
eqbrtrdi |
|- ( ph -> ( abs ` ( A - A ) ) <_ 1 ) |
62 |
|
1red |
|- ( ph -> 1 e. RR ) |
63 |
|
elicc4abs |
|- ( ( A e. RR /\ 1 e. RR /\ A e. RR ) -> ( A e. ( ( A - 1 ) [,] ( A + 1 ) ) <-> ( abs ` ( A - A ) ) <_ 1 ) ) |
64 |
4 62 4 63
|
syl3anc |
|- ( ph -> ( A e. ( ( A - 1 ) [,] ( A + 1 ) ) <-> ( abs ` ( A - A ) ) <_ 1 ) ) |
65 |
61 64
|
mpbird |
|- ( ph -> A e. ( ( A - 1 ) [,] ( A + 1 ) ) ) |
66 |
65
|
adantr |
|- ( ( ph /\ a e. RR ) -> A e. ( ( A - 1 ) [,] ( A + 1 ) ) ) |
67 |
66
|
3ad2ant1 |
|- ( ( ( ph /\ a e. RR ) /\ r e. RR /\ ( abs ` ( A - r ) ) <_ 1 ) -> A e. ( ( A - 1 ) [,] ( A + 1 ) ) ) |
68 |
|
fveq2 |
|- ( b = r -> ( F ` b ) = ( F ` r ) ) |
69 |
68
|
oveq2d |
|- ( b = r -> ( ( F ` c ) - ( F ` b ) ) = ( ( F ` c ) - ( F ` r ) ) ) |
70 |
69
|
fveq2d |
|- ( b = r -> ( abs ` ( ( F ` c ) - ( F ` b ) ) ) = ( abs ` ( ( F ` c ) - ( F ` r ) ) ) ) |
71 |
|
oveq2 |
|- ( b = r -> ( c - b ) = ( c - r ) ) |
72 |
71
|
fveq2d |
|- ( b = r -> ( abs ` ( c - b ) ) = ( abs ` ( c - r ) ) ) |
73 |
72
|
oveq2d |
|- ( b = r -> ( a x. ( abs ` ( c - b ) ) ) = ( a x. ( abs ` ( c - r ) ) ) ) |
74 |
70 73
|
breq12d |
|- ( b = r -> ( ( abs ` ( ( F ` c ) - ( F ` b ) ) ) <_ ( a x. ( abs ` ( c - b ) ) ) <-> ( abs ` ( ( F ` c ) - ( F ` r ) ) ) <_ ( a x. ( abs ` ( c - r ) ) ) ) ) |
75 |
|
fveq2 |
|- ( c = A -> ( F ` c ) = ( F ` A ) ) |
76 |
75
|
fvoveq1d |
|- ( c = A -> ( abs ` ( ( F ` c ) - ( F ` r ) ) ) = ( abs ` ( ( F ` A ) - ( F ` r ) ) ) ) |
77 |
|
fvoveq1 |
|- ( c = A -> ( abs ` ( c - r ) ) = ( abs ` ( A - r ) ) ) |
78 |
77
|
oveq2d |
|- ( c = A -> ( a x. ( abs ` ( c - r ) ) ) = ( a x. ( abs ` ( A - r ) ) ) ) |
79 |
76 78
|
breq12d |
|- ( c = A -> ( ( abs ` ( ( F ` c ) - ( F ` r ) ) ) <_ ( a x. ( abs ` ( c - r ) ) ) <-> ( abs ` ( ( F ` A ) - ( F ` r ) ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) |
80 |
74 79
|
rspc2v |
|- ( ( r e. ( ( A - 1 ) [,] ( A + 1 ) ) /\ A e. ( ( A - 1 ) [,] ( A + 1 ) ) ) -> ( A. b e. ( ( A - 1 ) [,] ( A + 1 ) ) A. c e. ( ( A - 1 ) [,] ( A + 1 ) ) ( abs ` ( ( F ` c ) - ( F ` b ) ) ) <_ ( a x. ( abs ` ( c - b ) ) ) -> ( abs ` ( ( F ` A ) - ( F ` r ) ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) |
81 |
54 67 80
|
syl2anc |
|- ( ( ( ph /\ a e. RR ) /\ r e. RR /\ ( abs ` ( A - r ) ) <_ 1 ) -> ( A. b e. ( ( A - 1 ) [,] ( A + 1 ) ) A. c e. ( ( A - 1 ) [,] ( A + 1 ) ) ( abs ` ( ( F ` c ) - ( F ` b ) ) ) <_ ( a x. ( abs ` ( c - b ) ) ) -> ( abs ` ( ( F ` A ) - ( F ` r ) ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) |
82 |
|
simp1l |
|- ( ( ( ph /\ a e. RR ) /\ r e. RR /\ ( abs ` ( A - r ) ) <_ 1 ) -> ph ) |
83 |
82 5
|
syl |
|- ( ( ( ph /\ a e. RR ) /\ r e. RR /\ ( abs ` ( A - r ) ) <_ 1 ) -> ( F ` A ) = 0 ) |
84 |
|
0cn |
|- 0 e. CC |
85 |
83 84
|
eqeltrdi |
|- ( ( ( ph /\ a e. RR ) /\ r e. RR /\ ( abs ` ( A - r ) ) <_ 1 ) -> ( F ` A ) e. CC ) |
86 |
39
|
adantr |
|- ( ( ph /\ a e. RR ) -> F : CC --> CC ) |
87 |
86
|
3ad2ant1 |
|- ( ( ( ph /\ a e. RR ) /\ r e. RR /\ ( abs ` ( A - r ) ) <_ 1 ) -> F : CC --> CC ) |
88 |
87 44
|
ffvelrnd |
|- ( ( ( ph /\ a e. RR ) /\ r e. RR /\ ( abs ` ( A - r ) ) <_ 1 ) -> ( F ` r ) e. CC ) |
89 |
85 88
|
abssubd |
|- ( ( ( ph /\ a e. RR ) /\ r e. RR /\ ( abs ` ( A - r ) ) <_ 1 ) -> ( abs ` ( ( F ` A ) - ( F ` r ) ) ) = ( abs ` ( ( F ` r ) - ( F ` A ) ) ) ) |
90 |
83
|
oveq2d |
|- ( ( ( ph /\ a e. RR ) /\ r e. RR /\ ( abs ` ( A - r ) ) <_ 1 ) -> ( ( F ` r ) - ( F ` A ) ) = ( ( F ` r ) - 0 ) ) |
91 |
88
|
subid1d |
|- ( ( ( ph /\ a e. RR ) /\ r e. RR /\ ( abs ` ( A - r ) ) <_ 1 ) -> ( ( F ` r ) - 0 ) = ( F ` r ) ) |
92 |
90 91
|
eqtrd |
|- ( ( ( ph /\ a e. RR ) /\ r e. RR /\ ( abs ` ( A - r ) ) <_ 1 ) -> ( ( F ` r ) - ( F ` A ) ) = ( F ` r ) ) |
93 |
92
|
fveq2d |
|- ( ( ( ph /\ a e. RR ) /\ r e. RR /\ ( abs ` ( A - r ) ) <_ 1 ) -> ( abs ` ( ( F ` r ) - ( F ` A ) ) ) = ( abs ` ( F ` r ) ) ) |
94 |
89 93
|
eqtrd |
|- ( ( ( ph /\ a e. RR ) /\ r e. RR /\ ( abs ` ( A - r ) ) <_ 1 ) -> ( abs ` ( ( F ` A ) - ( F ` r ) ) ) = ( abs ` ( F ` r ) ) ) |
95 |
94
|
breq1d |
|- ( ( ( ph /\ a e. RR ) /\ r e. RR /\ ( abs ` ( A - r ) ) <_ 1 ) -> ( ( abs ` ( ( F ` A ) - ( F ` r ) ) ) <_ ( a x. ( abs ` ( A - r ) ) ) <-> ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) |
96 |
81 95
|
sylibd |
|- ( ( ( ph /\ a e. RR ) /\ r e. RR /\ ( abs ` ( A - r ) ) <_ 1 ) -> ( A. b e. ( ( A - 1 ) [,] ( A + 1 ) ) A. c e. ( ( A - 1 ) [,] ( A + 1 ) ) ( abs ` ( ( F ` c ) - ( F ` b ) ) ) <_ ( a x. ( abs ` ( c - b ) ) ) -> ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) |
97 |
96
|
3exp |
|- ( ( ph /\ a e. RR ) -> ( r e. RR -> ( ( abs ` ( A - r ) ) <_ 1 -> ( A. b e. ( ( A - 1 ) [,] ( A + 1 ) ) A. c e. ( ( A - 1 ) [,] ( A + 1 ) ) ( abs ` ( ( F ` c ) - ( F ` b ) ) ) <_ ( a x. ( abs ` ( c - b ) ) ) -> ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) ) ) |
98 |
97
|
com34 |
|- ( ( ph /\ a e. RR ) -> ( r e. RR -> ( A. b e. ( ( A - 1 ) [,] ( A + 1 ) ) A. c e. ( ( A - 1 ) [,] ( A + 1 ) ) ( abs ` ( ( F ` c ) - ( F ` b ) ) ) <_ ( a x. ( abs ` ( c - b ) ) ) -> ( ( abs ` ( A - r ) ) <_ 1 -> ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) ) ) |
99 |
98
|
com23 |
|- ( ( ph /\ a e. RR ) -> ( A. b e. ( ( A - 1 ) [,] ( A + 1 ) ) A. c e. ( ( A - 1 ) [,] ( A + 1 ) ) ( abs ` ( ( F ` c ) - ( F ` b ) ) ) <_ ( a x. ( abs ` ( c - b ) ) ) -> ( r e. RR -> ( ( abs ` ( A - r ) ) <_ 1 -> ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) ) ) |
100 |
99
|
ralrimdv |
|- ( ( ph /\ a e. RR ) -> ( A. b e. ( ( A - 1 ) [,] ( A + 1 ) ) A. c e. ( ( A - 1 ) [,] ( A + 1 ) ) ( abs ` ( ( F ` c ) - ( F ` b ) ) ) <_ ( a x. ( abs ` ( c - b ) ) ) -> A. r e. RR ( ( abs ` ( A - r ) ) <_ 1 -> ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) ) |
101 |
100
|
reximdva |
|- ( ph -> ( E. a e. RR A. b e. ( ( A - 1 ) [,] ( A + 1 ) ) A. c e. ( ( A - 1 ) [,] ( A + 1 ) ) ( abs ` ( ( F ` c ) - ( F ` b ) ) ) <_ ( a x. ( abs ` ( c - b ) ) ) -> E. a e. RR A. r e. RR ( ( abs ` ( A - r ) ) <_ 1 -> ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) ) |
102 |
42 101
|
mpd |
|- ( ph -> E. a e. RR A. r e. RR ( ( abs ` ( A - r ) ) <_ 1 -> ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) |
103 |
|
1rp |
|- 1 e. RR+ |
104 |
103
|
a1i |
|- ( ( ( ph /\ a e. RR ) /\ a = 0 ) -> 1 e. RR+ ) |
105 |
|
recn |
|- ( a e. RR -> a e. CC ) |
106 |
105
|
adantl |
|- ( ( ph /\ a e. RR ) -> a e. CC ) |
107 |
|
neqne |
|- ( -. a = 0 -> a =/= 0 ) |
108 |
|
absrpcl |
|- ( ( a e. CC /\ a =/= 0 ) -> ( abs ` a ) e. RR+ ) |
109 |
106 107 108
|
syl2an |
|- ( ( ( ph /\ a e. RR ) /\ -. a = 0 ) -> ( abs ` a ) e. RR+ ) |
110 |
109
|
rpreccld |
|- ( ( ( ph /\ a e. RR ) /\ -. a = 0 ) -> ( 1 / ( abs ` a ) ) e. RR+ ) |
111 |
104 110
|
ifclda |
|- ( ( ph /\ a e. RR ) -> if ( a = 0 , 1 , ( 1 / ( abs ` a ) ) ) e. RR+ ) |
112 |
|
eqid |
|- if ( a = 0 , 1 , ( 1 / ( abs ` a ) ) ) = if ( a = 0 , 1 , ( 1 / ( abs ` a ) ) ) |
113 |
|
eqif |
|- ( if ( a = 0 , 1 , ( 1 / ( abs ` a ) ) ) = if ( a = 0 , 1 , ( 1 / ( abs ` a ) ) ) <-> ( ( a = 0 /\ if ( a = 0 , 1 , ( 1 / ( abs ` a ) ) ) = 1 ) \/ ( -. a = 0 /\ if ( a = 0 , 1 , ( 1 / ( abs ` a ) ) ) = ( 1 / ( abs ` a ) ) ) ) ) |
114 |
112 113
|
mpbi |
|- ( ( a = 0 /\ if ( a = 0 , 1 , ( 1 / ( abs ` a ) ) ) = 1 ) \/ ( -. a = 0 /\ if ( a = 0 , 1 , ( 1 / ( abs ` a ) ) ) = ( 1 / ( abs ` a ) ) ) ) |
115 |
|
simplrr |
|- ( ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) /\ a = 0 ) -> ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) |
116 |
|
oveq1 |
|- ( a = 0 -> ( a x. ( abs ` ( A - r ) ) ) = ( 0 x. ( abs ` ( A - r ) ) ) ) |
117 |
116
|
adantl |
|- ( ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) /\ a = 0 ) -> ( a x. ( abs ` ( A - r ) ) ) = ( 0 x. ( abs ` ( A - r ) ) ) ) |
118 |
4
|
ad2antrr |
|- ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) -> A e. RR ) |
119 |
|
simprl |
|- ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) -> r e. RR ) |
120 |
118 119
|
resubcld |
|- ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) -> ( A - r ) e. RR ) |
121 |
120
|
recnd |
|- ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) -> ( A - r ) e. CC ) |
122 |
121
|
abscld |
|- ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) -> ( abs ` ( A - r ) ) e. RR ) |
123 |
122
|
recnd |
|- ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) -> ( abs ` ( A - r ) ) e. CC ) |
124 |
123
|
adantr |
|- ( ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) /\ a = 0 ) -> ( abs ` ( A - r ) ) e. CC ) |
125 |
124
|
mul02d |
|- ( ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) /\ a = 0 ) -> ( 0 x. ( abs ` ( A - r ) ) ) = 0 ) |
126 |
117 125
|
eqtrd |
|- ( ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) /\ a = 0 ) -> ( a x. ( abs ` ( A - r ) ) ) = 0 ) |
127 |
115 126
|
breqtrd |
|- ( ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) /\ a = 0 ) -> ( abs ` ( F ` r ) ) <_ 0 ) |
128 |
39
|
ad2antrr |
|- ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) -> F : CC --> CC ) |
129 |
119
|
recnd |
|- ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) -> r e. CC ) |
130 |
128 129
|
ffvelrnd |
|- ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) -> ( F ` r ) e. CC ) |
131 |
130
|
adantr |
|- ( ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) /\ a = 0 ) -> ( F ` r ) e. CC ) |
132 |
131
|
absge0d |
|- ( ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) /\ a = 0 ) -> 0 <_ ( abs ` ( F ` r ) ) ) |
133 |
130
|
abscld |
|- ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) -> ( abs ` ( F ` r ) ) e. RR ) |
134 |
133
|
adantr |
|- ( ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) /\ a = 0 ) -> ( abs ` ( F ` r ) ) e. RR ) |
135 |
|
0re |
|- 0 e. RR |
136 |
|
letri3 |
|- ( ( ( abs ` ( F ` r ) ) e. RR /\ 0 e. RR ) -> ( ( abs ` ( F ` r ) ) = 0 <-> ( ( abs ` ( F ` r ) ) <_ 0 /\ 0 <_ ( abs ` ( F ` r ) ) ) ) ) |
137 |
134 135 136
|
sylancl |
|- ( ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) /\ a = 0 ) -> ( ( abs ` ( F ` r ) ) = 0 <-> ( ( abs ` ( F ` r ) ) <_ 0 /\ 0 <_ ( abs ` ( F ` r ) ) ) ) ) |
138 |
127 132 137
|
mpbir2and |
|- ( ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) /\ a = 0 ) -> ( abs ` ( F ` r ) ) = 0 ) |
139 |
138
|
oveq2d |
|- ( ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) /\ a = 0 ) -> ( 1 x. ( abs ` ( F ` r ) ) ) = ( 1 x. 0 ) ) |
140 |
|
ax-1cn |
|- 1 e. CC |
141 |
140
|
mul01i |
|- ( 1 x. 0 ) = 0 |
142 |
139 141
|
eqtrdi |
|- ( ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) /\ a = 0 ) -> ( 1 x. ( abs ` ( F ` r ) ) ) = 0 ) |
143 |
121
|
adantr |
|- ( ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) /\ a = 0 ) -> ( A - r ) e. CC ) |
144 |
143
|
absge0d |
|- ( ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) /\ a = 0 ) -> 0 <_ ( abs ` ( A - r ) ) ) |
145 |
142 144
|
eqbrtrd |
|- ( ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) /\ a = 0 ) -> ( 1 x. ( abs ` ( F ` r ) ) ) <_ ( abs ` ( A - r ) ) ) |
146 |
|
oveq1 |
|- ( if ( a = 0 , 1 , ( 1 / ( abs ` a ) ) ) = 1 -> ( if ( a = 0 , 1 , ( 1 / ( abs ` a ) ) ) x. ( abs ` ( F ` r ) ) ) = ( 1 x. ( abs ` ( F ` r ) ) ) ) |
147 |
146
|
breq1d |
|- ( if ( a = 0 , 1 , ( 1 / ( abs ` a ) ) ) = 1 -> ( ( if ( a = 0 , 1 , ( 1 / ( abs ` a ) ) ) x. ( abs ` ( F ` r ) ) ) <_ ( abs ` ( A - r ) ) <-> ( 1 x. ( abs ` ( F ` r ) ) ) <_ ( abs ` ( A - r ) ) ) ) |
148 |
145 147
|
syl5ibrcom |
|- ( ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) /\ a = 0 ) -> ( if ( a = 0 , 1 , ( 1 / ( abs ` a ) ) ) = 1 -> ( if ( a = 0 , 1 , ( 1 / ( abs ` a ) ) ) x. ( abs ` ( F ` r ) ) ) <_ ( abs ` ( A - r ) ) ) ) |
149 |
148
|
expimpd |
|- ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) -> ( ( a = 0 /\ if ( a = 0 , 1 , ( 1 / ( abs ` a ) ) ) = 1 ) -> ( if ( a = 0 , 1 , ( 1 / ( abs ` a ) ) ) x. ( abs ` ( F ` r ) ) ) <_ ( abs ` ( A - r ) ) ) ) |
150 |
|
df-ne |
|- ( a =/= 0 <-> -. a = 0 ) |
151 |
133
|
adantr |
|- ( ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) /\ a =/= 0 ) -> ( abs ` ( F ` r ) ) e. RR ) |
152 |
151
|
recnd |
|- ( ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) /\ a =/= 0 ) -> ( abs ` ( F ` r ) ) e. CC ) |
153 |
|
simpllr |
|- ( ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) /\ a =/= 0 ) -> a e. RR ) |
154 |
153
|
recnd |
|- ( ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) /\ a =/= 0 ) -> a e. CC ) |
155 |
154 108
|
sylancom |
|- ( ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) /\ a =/= 0 ) -> ( abs ` a ) e. RR+ ) |
156 |
155
|
rpcnne0d |
|- ( ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) /\ a =/= 0 ) -> ( ( abs ` a ) e. CC /\ ( abs ` a ) =/= 0 ) ) |
157 |
|
divrec2 |
|- ( ( ( abs ` ( F ` r ) ) e. CC /\ ( abs ` a ) e. CC /\ ( abs ` a ) =/= 0 ) -> ( ( abs ` ( F ` r ) ) / ( abs ` a ) ) = ( ( 1 / ( abs ` a ) ) x. ( abs ` ( F ` r ) ) ) ) |
158 |
157
|
3expb |
|- ( ( ( abs ` ( F ` r ) ) e. CC /\ ( ( abs ` a ) e. CC /\ ( abs ` a ) =/= 0 ) ) -> ( ( abs ` ( F ` r ) ) / ( abs ` a ) ) = ( ( 1 / ( abs ` a ) ) x. ( abs ` ( F ` r ) ) ) ) |
159 |
152 156 158
|
syl2anc |
|- ( ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) /\ a =/= 0 ) -> ( ( abs ` ( F ` r ) ) / ( abs ` a ) ) = ( ( 1 / ( abs ` a ) ) x. ( abs ` ( F ` r ) ) ) ) |
160 |
|
simplr |
|- ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) -> a e. RR ) |
161 |
160 122
|
remulcld |
|- ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) -> ( a x. ( abs ` ( A - r ) ) ) e. RR ) |
162 |
160
|
recnd |
|- ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) -> a e. CC ) |
163 |
162
|
abscld |
|- ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) -> ( abs ` a ) e. RR ) |
164 |
163 122
|
remulcld |
|- ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) -> ( ( abs ` a ) x. ( abs ` ( A - r ) ) ) e. RR ) |
165 |
|
simprr |
|- ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) -> ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) |
166 |
121
|
absge0d |
|- ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) -> 0 <_ ( abs ` ( A - r ) ) ) |
167 |
|
leabs |
|- ( a e. RR -> a <_ ( abs ` a ) ) |
168 |
167
|
ad2antlr |
|- ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) -> a <_ ( abs ` a ) ) |
169 |
160 163 122 166 168
|
lemul1ad |
|- ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) -> ( a x. ( abs ` ( A - r ) ) ) <_ ( ( abs ` a ) x. ( abs ` ( A - r ) ) ) ) |
170 |
133 161 164 165 169
|
letrd |
|- ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) -> ( abs ` ( F ` r ) ) <_ ( ( abs ` a ) x. ( abs ` ( A - r ) ) ) ) |
171 |
170
|
adantr |
|- ( ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) /\ a =/= 0 ) -> ( abs ` ( F ` r ) ) <_ ( ( abs ` a ) x. ( abs ` ( A - r ) ) ) ) |
172 |
122
|
adantr |
|- ( ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) /\ a =/= 0 ) -> ( abs ` ( A - r ) ) e. RR ) |
173 |
151 172 155
|
ledivmuld |
|- ( ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) /\ a =/= 0 ) -> ( ( ( abs ` ( F ` r ) ) / ( abs ` a ) ) <_ ( abs ` ( A - r ) ) <-> ( abs ` ( F ` r ) ) <_ ( ( abs ` a ) x. ( abs ` ( A - r ) ) ) ) ) |
174 |
171 173
|
mpbird |
|- ( ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) /\ a =/= 0 ) -> ( ( abs ` ( F ` r ) ) / ( abs ` a ) ) <_ ( abs ` ( A - r ) ) ) |
175 |
159 174
|
eqbrtrrd |
|- ( ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) /\ a =/= 0 ) -> ( ( 1 / ( abs ` a ) ) x. ( abs ` ( F ` r ) ) ) <_ ( abs ` ( A - r ) ) ) |
176 |
150 175
|
sylan2br |
|- ( ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) /\ -. a = 0 ) -> ( ( 1 / ( abs ` a ) ) x. ( abs ` ( F ` r ) ) ) <_ ( abs ` ( A - r ) ) ) |
177 |
|
oveq1 |
|- ( if ( a = 0 , 1 , ( 1 / ( abs ` a ) ) ) = ( 1 / ( abs ` a ) ) -> ( if ( a = 0 , 1 , ( 1 / ( abs ` a ) ) ) x. ( abs ` ( F ` r ) ) ) = ( ( 1 / ( abs ` a ) ) x. ( abs ` ( F ` r ) ) ) ) |
178 |
177
|
breq1d |
|- ( if ( a = 0 , 1 , ( 1 / ( abs ` a ) ) ) = ( 1 / ( abs ` a ) ) -> ( ( if ( a = 0 , 1 , ( 1 / ( abs ` a ) ) ) x. ( abs ` ( F ` r ) ) ) <_ ( abs ` ( A - r ) ) <-> ( ( 1 / ( abs ` a ) ) x. ( abs ` ( F ` r ) ) ) <_ ( abs ` ( A - r ) ) ) ) |
179 |
176 178
|
syl5ibrcom |
|- ( ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) /\ -. a = 0 ) -> ( if ( a = 0 , 1 , ( 1 / ( abs ` a ) ) ) = ( 1 / ( abs ` a ) ) -> ( if ( a = 0 , 1 , ( 1 / ( abs ` a ) ) ) x. ( abs ` ( F ` r ) ) ) <_ ( abs ` ( A - r ) ) ) ) |
180 |
179
|
expimpd |
|- ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) -> ( ( -. a = 0 /\ if ( a = 0 , 1 , ( 1 / ( abs ` a ) ) ) = ( 1 / ( abs ` a ) ) ) -> ( if ( a = 0 , 1 , ( 1 / ( abs ` a ) ) ) x. ( abs ` ( F ` r ) ) ) <_ ( abs ` ( A - r ) ) ) ) |
181 |
149 180
|
jaod |
|- ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) -> ( ( ( a = 0 /\ if ( a = 0 , 1 , ( 1 / ( abs ` a ) ) ) = 1 ) \/ ( -. a = 0 /\ if ( a = 0 , 1 , ( 1 / ( abs ` a ) ) ) = ( 1 / ( abs ` a ) ) ) ) -> ( if ( a = 0 , 1 , ( 1 / ( abs ` a ) ) ) x. ( abs ` ( F ` r ) ) ) <_ ( abs ` ( A - r ) ) ) ) |
182 |
114 181
|
mpi |
|- ( ( ( ph /\ a e. RR ) /\ ( r e. RR /\ ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) ) -> ( if ( a = 0 , 1 , ( 1 / ( abs ` a ) ) ) x. ( abs ` ( F ` r ) ) ) <_ ( abs ` ( A - r ) ) ) |
183 |
182
|
expr |
|- ( ( ( ph /\ a e. RR ) /\ r e. RR ) -> ( ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) -> ( if ( a = 0 , 1 , ( 1 / ( abs ` a ) ) ) x. ( abs ` ( F ` r ) ) ) <_ ( abs ` ( A - r ) ) ) ) |
184 |
183
|
imim2d |
|- ( ( ( ph /\ a e. RR ) /\ r e. RR ) -> ( ( ( abs ` ( A - r ) ) <_ 1 -> ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) -> ( ( abs ` ( A - r ) ) <_ 1 -> ( if ( a = 0 , 1 , ( 1 / ( abs ` a ) ) ) x. ( abs ` ( F ` r ) ) ) <_ ( abs ` ( A - r ) ) ) ) ) |
185 |
184
|
ralimdva |
|- ( ( ph /\ a e. RR ) -> ( A. r e. RR ( ( abs ` ( A - r ) ) <_ 1 -> ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) -> A. r e. RR ( ( abs ` ( A - r ) ) <_ 1 -> ( if ( a = 0 , 1 , ( 1 / ( abs ` a ) ) ) x. ( abs ` ( F ` r ) ) ) <_ ( abs ` ( A - r ) ) ) ) ) |
186 |
|
oveq1 |
|- ( x = if ( a = 0 , 1 , ( 1 / ( abs ` a ) ) ) -> ( x x. ( abs ` ( F ` r ) ) ) = ( if ( a = 0 , 1 , ( 1 / ( abs ` a ) ) ) x. ( abs ` ( F ` r ) ) ) ) |
187 |
186
|
breq1d |
|- ( x = if ( a = 0 , 1 , ( 1 / ( abs ` a ) ) ) -> ( ( x x. ( abs ` ( F ` r ) ) ) <_ ( abs ` ( A - r ) ) <-> ( if ( a = 0 , 1 , ( 1 / ( abs ` a ) ) ) x. ( abs ` ( F ` r ) ) ) <_ ( abs ` ( A - r ) ) ) ) |
188 |
187
|
imbi2d |
|- ( x = if ( a = 0 , 1 , ( 1 / ( abs ` a ) ) ) -> ( ( ( abs ` ( A - r ) ) <_ 1 -> ( x x. ( abs ` ( F ` r ) ) ) <_ ( abs ` ( A - r ) ) ) <-> ( ( abs ` ( A - r ) ) <_ 1 -> ( if ( a = 0 , 1 , ( 1 / ( abs ` a ) ) ) x. ( abs ` ( F ` r ) ) ) <_ ( abs ` ( A - r ) ) ) ) ) |
189 |
188
|
ralbidv |
|- ( x = if ( a = 0 , 1 , ( 1 / ( abs ` a ) ) ) -> ( A. r e. RR ( ( abs ` ( A - r ) ) <_ 1 -> ( x x. ( abs ` ( F ` r ) ) ) <_ ( abs ` ( A - r ) ) ) <-> A. r e. RR ( ( abs ` ( A - r ) ) <_ 1 -> ( if ( a = 0 , 1 , ( 1 / ( abs ` a ) ) ) x. ( abs ` ( F ` r ) ) ) <_ ( abs ` ( A - r ) ) ) ) ) |
190 |
189
|
rspcev |
|- ( ( if ( a = 0 , 1 , ( 1 / ( abs ` a ) ) ) e. RR+ /\ A. r e. RR ( ( abs ` ( A - r ) ) <_ 1 -> ( if ( a = 0 , 1 , ( 1 / ( abs ` a ) ) ) x. ( abs ` ( F ` r ) ) ) <_ ( abs ` ( A - r ) ) ) ) -> E. x e. RR+ A. r e. RR ( ( abs ` ( A - r ) ) <_ 1 -> ( x x. ( abs ` ( F ` r ) ) ) <_ ( abs ` ( A - r ) ) ) ) |
191 |
111 185 190
|
syl6an |
|- ( ( ph /\ a e. RR ) -> ( A. r e. RR ( ( abs ` ( A - r ) ) <_ 1 -> ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) -> E. x e. RR+ A. r e. RR ( ( abs ` ( A - r ) ) <_ 1 -> ( x x. ( abs ` ( F ` r ) ) ) <_ ( abs ` ( A - r ) ) ) ) ) |
192 |
191
|
rexlimdva |
|- ( ph -> ( E. a e. RR A. r e. RR ( ( abs ` ( A - r ) ) <_ 1 -> ( abs ` ( F ` r ) ) <_ ( a x. ( abs ` ( A - r ) ) ) ) -> E. x e. RR+ A. r e. RR ( ( abs ` ( A - r ) ) <_ 1 -> ( x x. ( abs ` ( F ` r ) ) ) <_ ( abs ` ( A - r ) ) ) ) ) |
193 |
102 192
|
mpd |
|- ( ph -> E. x e. RR+ A. r e. RR ( ( abs ` ( A - r ) ) <_ 1 -> ( x x. ( abs ` ( F ` r ) ) ) <_ ( abs ` ( A - r ) ) ) ) |