Step |
Hyp |
Ref |
Expression |
1 |
|
aannenlem.a |
|- H = ( a e. NN0 |-> { b e. CC | E. c e. { d e. ( Poly ` ZZ ) | ( d =/= 0p /\ ( deg ` d ) <_ a /\ A. e e. NN0 ( abs ` ( ( coeff ` d ) ` e ) ) <_ a ) } ( c ` b ) = 0 } ) |
2 |
|
breq2 |
|- ( a = A -> ( ( deg ` d ) <_ a <-> ( deg ` d ) <_ A ) ) |
3 |
|
breq2 |
|- ( a = A -> ( ( abs ` ( ( coeff ` d ) ` e ) ) <_ a <-> ( abs ` ( ( coeff ` d ) ` e ) ) <_ A ) ) |
4 |
3
|
ralbidv |
|- ( a = A -> ( A. e e. NN0 ( abs ` ( ( coeff ` d ) ` e ) ) <_ a <-> A. e e. NN0 ( abs ` ( ( coeff ` d ) ` e ) ) <_ A ) ) |
5 |
2 4
|
3anbi23d |
|- ( a = A -> ( ( d =/= 0p /\ ( deg ` d ) <_ a /\ A. e e. NN0 ( abs ` ( ( coeff ` d ) ` e ) ) <_ a ) <-> ( d =/= 0p /\ ( deg ` d ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` d ) ` e ) ) <_ A ) ) ) |
6 |
5
|
rabbidv |
|- ( a = A -> { d e. ( Poly ` ZZ ) | ( d =/= 0p /\ ( deg ` d ) <_ a /\ A. e e. NN0 ( abs ` ( ( coeff ` d ) ` e ) ) <_ a ) } = { d e. ( Poly ` ZZ ) | ( d =/= 0p /\ ( deg ` d ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` d ) ` e ) ) <_ A ) } ) |
7 |
6
|
rexeqdv |
|- ( a = A -> ( E. c e. { d e. ( Poly ` ZZ ) | ( d =/= 0p /\ ( deg ` d ) <_ a /\ A. e e. NN0 ( abs ` ( ( coeff ` d ) ` e ) ) <_ a ) } ( c ` b ) = 0 <-> E. c e. { d e. ( Poly ` ZZ ) | ( d =/= 0p /\ ( deg ` d ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` d ) ` e ) ) <_ A ) } ( c ` b ) = 0 ) ) |
8 |
7
|
rabbidv |
|- ( a = A -> { b e. CC | E. c e. { d e. ( Poly ` ZZ ) | ( d =/= 0p /\ ( deg ` d ) <_ a /\ A. e e. NN0 ( abs ` ( ( coeff ` d ) ` e ) ) <_ a ) } ( c ` b ) = 0 } = { b e. CC | E. c e. { d e. ( Poly ` ZZ ) | ( d =/= 0p /\ ( deg ` d ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` d ) ` e ) ) <_ A ) } ( c ` b ) = 0 } ) |
9 |
|
cnex |
|- CC e. _V |
10 |
9
|
rabex |
|- { b e. CC | E. c e. { d e. ( Poly ` ZZ ) | ( d =/= 0p /\ ( deg ` d ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` d ) ` e ) ) <_ A ) } ( c ` b ) = 0 } e. _V |
11 |
8 1 10
|
fvmpt |
|- ( A e. NN0 -> ( H ` A ) = { b e. CC | E. c e. { d e. ( Poly ` ZZ ) | ( d =/= 0p /\ ( deg ` d ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` d ) ` e ) ) <_ A ) } ( c ` b ) = 0 } ) |
12 |
|
iunrab |
|- U_ c e. { d e. ( Poly ` ZZ ) | ( d =/= 0p /\ ( deg ` d ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` d ) ` e ) ) <_ A ) } { b e. CC | ( c ` b ) = 0 } = { b e. CC | E. c e. { d e. ( Poly ` ZZ ) | ( d =/= 0p /\ ( deg ` d ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` d ) ` e ) ) <_ A ) } ( c ` b ) = 0 } |
13 |
|
fzfi |
|- ( -u A ... A ) e. Fin |
14 |
|
fzfi |
|- ( 0 ... A ) e. Fin |
15 |
|
mapfi |
|- ( ( ( -u A ... A ) e. Fin /\ ( 0 ... A ) e. Fin ) -> ( ( -u A ... A ) ^m ( 0 ... A ) ) e. Fin ) |
16 |
13 14 15
|
mp2an |
|- ( ( -u A ... A ) ^m ( 0 ... A ) ) e. Fin |
17 |
16
|
a1i |
|- ( A e. NN0 -> ( ( -u A ... A ) ^m ( 0 ... A ) ) e. Fin ) |
18 |
|
ovex |
|- ( ( -u A ... A ) ^m ( 0 ... A ) ) e. _V |
19 |
|
neeq1 |
|- ( d = a -> ( d =/= 0p <-> a =/= 0p ) ) |
20 |
|
fveq2 |
|- ( d = a -> ( deg ` d ) = ( deg ` a ) ) |
21 |
20
|
breq1d |
|- ( d = a -> ( ( deg ` d ) <_ A <-> ( deg ` a ) <_ A ) ) |
22 |
|
fveq2 |
|- ( d = a -> ( coeff ` d ) = ( coeff ` a ) ) |
23 |
22
|
fveq1d |
|- ( d = a -> ( ( coeff ` d ) ` e ) = ( ( coeff ` a ) ` e ) ) |
24 |
23
|
fveq2d |
|- ( d = a -> ( abs ` ( ( coeff ` d ) ` e ) ) = ( abs ` ( ( coeff ` a ) ` e ) ) ) |
25 |
24
|
breq1d |
|- ( d = a -> ( ( abs ` ( ( coeff ` d ) ` e ) ) <_ A <-> ( abs ` ( ( coeff ` a ) ` e ) ) <_ A ) ) |
26 |
25
|
ralbidv |
|- ( d = a -> ( A. e e. NN0 ( abs ` ( ( coeff ` d ) ` e ) ) <_ A <-> A. e e. NN0 ( abs ` ( ( coeff ` a ) ` e ) ) <_ A ) ) |
27 |
19 21 26
|
3anbi123d |
|- ( d = a -> ( ( d =/= 0p /\ ( deg ` d ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` d ) ` e ) ) <_ A ) <-> ( a =/= 0p /\ ( deg ` a ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` a ) ` e ) ) <_ A ) ) ) |
28 |
27
|
elrab |
|- ( a e. { d e. ( Poly ` ZZ ) | ( d =/= 0p /\ ( deg ` d ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` d ) ` e ) ) <_ A ) } <-> ( a e. ( Poly ` ZZ ) /\ ( a =/= 0p /\ ( deg ` a ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` a ) ` e ) ) <_ A ) ) ) |
29 |
|
simp3 |
|- ( ( a =/= 0p /\ ( deg ` a ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` a ) ` e ) ) <_ A ) -> A. e e. NN0 ( abs ` ( ( coeff ` a ) ` e ) ) <_ A ) |
30 |
29
|
anim2i |
|- ( ( a e. ( Poly ` ZZ ) /\ ( a =/= 0p /\ ( deg ` a ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` a ) ` e ) ) <_ A ) ) -> ( a e. ( Poly ` ZZ ) /\ A. e e. NN0 ( abs ` ( ( coeff ` a ) ` e ) ) <_ A ) ) |
31 |
28 30
|
sylbi |
|- ( a e. { d e. ( Poly ` ZZ ) | ( d =/= 0p /\ ( deg ` d ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` d ) ` e ) ) <_ A ) } -> ( a e. ( Poly ` ZZ ) /\ A. e e. NN0 ( abs ` ( ( coeff ` a ) ` e ) ) <_ A ) ) |
32 |
|
0z |
|- 0 e. ZZ |
33 |
|
eqid |
|- ( coeff ` a ) = ( coeff ` a ) |
34 |
33
|
coef2 |
|- ( ( a e. ( Poly ` ZZ ) /\ 0 e. ZZ ) -> ( coeff ` a ) : NN0 --> ZZ ) |
35 |
32 34
|
mpan2 |
|- ( a e. ( Poly ` ZZ ) -> ( coeff ` a ) : NN0 --> ZZ ) |
36 |
35
|
ad2antrl |
|- ( ( A e. NN0 /\ ( a e. ( Poly ` ZZ ) /\ A. e e. NN0 ( abs ` ( ( coeff ` a ) ` e ) ) <_ A ) ) -> ( coeff ` a ) : NN0 --> ZZ ) |
37 |
36
|
ffnd |
|- ( ( A e. NN0 /\ ( a e. ( Poly ` ZZ ) /\ A. e e. NN0 ( abs ` ( ( coeff ` a ) ` e ) ) <_ A ) ) -> ( coeff ` a ) Fn NN0 ) |
38 |
35
|
adantl |
|- ( ( A e. NN0 /\ a e. ( Poly ` ZZ ) ) -> ( coeff ` a ) : NN0 --> ZZ ) |
39 |
38
|
ffvelrnda |
|- ( ( ( A e. NN0 /\ a e. ( Poly ` ZZ ) ) /\ e e. NN0 ) -> ( ( coeff ` a ) ` e ) e. ZZ ) |
40 |
39
|
zred |
|- ( ( ( A e. NN0 /\ a e. ( Poly ` ZZ ) ) /\ e e. NN0 ) -> ( ( coeff ` a ) ` e ) e. RR ) |
41 |
|
nn0re |
|- ( A e. NN0 -> A e. RR ) |
42 |
41
|
ad2antrr |
|- ( ( ( A e. NN0 /\ a e. ( Poly ` ZZ ) ) /\ e e. NN0 ) -> A e. RR ) |
43 |
40 42
|
absled |
|- ( ( ( A e. NN0 /\ a e. ( Poly ` ZZ ) ) /\ e e. NN0 ) -> ( ( abs ` ( ( coeff ` a ) ` e ) ) <_ A <-> ( -u A <_ ( ( coeff ` a ) ` e ) /\ ( ( coeff ` a ) ` e ) <_ A ) ) ) |
44 |
|
nn0z |
|- ( A e. NN0 -> A e. ZZ ) |
45 |
44
|
ad2antrr |
|- ( ( ( A e. NN0 /\ a e. ( Poly ` ZZ ) ) /\ e e. NN0 ) -> A e. ZZ ) |
46 |
45
|
znegcld |
|- ( ( ( A e. NN0 /\ a e. ( Poly ` ZZ ) ) /\ e e. NN0 ) -> -u A e. ZZ ) |
47 |
|
elfz |
|- ( ( ( ( coeff ` a ) ` e ) e. ZZ /\ -u A e. ZZ /\ A e. ZZ ) -> ( ( ( coeff ` a ) ` e ) e. ( -u A ... A ) <-> ( -u A <_ ( ( coeff ` a ) ` e ) /\ ( ( coeff ` a ) ` e ) <_ A ) ) ) |
48 |
39 46 45 47
|
syl3anc |
|- ( ( ( A e. NN0 /\ a e. ( Poly ` ZZ ) ) /\ e e. NN0 ) -> ( ( ( coeff ` a ) ` e ) e. ( -u A ... A ) <-> ( -u A <_ ( ( coeff ` a ) ` e ) /\ ( ( coeff ` a ) ` e ) <_ A ) ) ) |
49 |
43 48
|
bitr4d |
|- ( ( ( A e. NN0 /\ a e. ( Poly ` ZZ ) ) /\ e e. NN0 ) -> ( ( abs ` ( ( coeff ` a ) ` e ) ) <_ A <-> ( ( coeff ` a ) ` e ) e. ( -u A ... A ) ) ) |
50 |
49
|
biimpd |
|- ( ( ( A e. NN0 /\ a e. ( Poly ` ZZ ) ) /\ e e. NN0 ) -> ( ( abs ` ( ( coeff ` a ) ` e ) ) <_ A -> ( ( coeff ` a ) ` e ) e. ( -u A ... A ) ) ) |
51 |
50
|
ralimdva |
|- ( ( A e. NN0 /\ a e. ( Poly ` ZZ ) ) -> ( A. e e. NN0 ( abs ` ( ( coeff ` a ) ` e ) ) <_ A -> A. e e. NN0 ( ( coeff ` a ) ` e ) e. ( -u A ... A ) ) ) |
52 |
51
|
impr |
|- ( ( A e. NN0 /\ ( a e. ( Poly ` ZZ ) /\ A. e e. NN0 ( abs ` ( ( coeff ` a ) ` e ) ) <_ A ) ) -> A. e e. NN0 ( ( coeff ` a ) ` e ) e. ( -u A ... A ) ) |
53 |
|
fnfvrnss |
|- ( ( ( coeff ` a ) Fn NN0 /\ A. e e. NN0 ( ( coeff ` a ) ` e ) e. ( -u A ... A ) ) -> ran ( coeff ` a ) C_ ( -u A ... A ) ) |
54 |
37 52 53
|
syl2anc |
|- ( ( A e. NN0 /\ ( a e. ( Poly ` ZZ ) /\ A. e e. NN0 ( abs ` ( ( coeff ` a ) ` e ) ) <_ A ) ) -> ran ( coeff ` a ) C_ ( -u A ... A ) ) |
55 |
|
df-f |
|- ( ( coeff ` a ) : NN0 --> ( -u A ... A ) <-> ( ( coeff ` a ) Fn NN0 /\ ran ( coeff ` a ) C_ ( -u A ... A ) ) ) |
56 |
37 54 55
|
sylanbrc |
|- ( ( A e. NN0 /\ ( a e. ( Poly ` ZZ ) /\ A. e e. NN0 ( abs ` ( ( coeff ` a ) ` e ) ) <_ A ) ) -> ( coeff ` a ) : NN0 --> ( -u A ... A ) ) |
57 |
|
fz0ssnn0 |
|- ( 0 ... A ) C_ NN0 |
58 |
|
fssres |
|- ( ( ( coeff ` a ) : NN0 --> ( -u A ... A ) /\ ( 0 ... A ) C_ NN0 ) -> ( ( coeff ` a ) |` ( 0 ... A ) ) : ( 0 ... A ) --> ( -u A ... A ) ) |
59 |
56 57 58
|
sylancl |
|- ( ( A e. NN0 /\ ( a e. ( Poly ` ZZ ) /\ A. e e. NN0 ( abs ` ( ( coeff ` a ) ` e ) ) <_ A ) ) -> ( ( coeff ` a ) |` ( 0 ... A ) ) : ( 0 ... A ) --> ( -u A ... A ) ) |
60 |
|
ovex |
|- ( -u A ... A ) e. _V |
61 |
|
ovex |
|- ( 0 ... A ) e. _V |
62 |
60 61
|
elmap |
|- ( ( ( coeff ` a ) |` ( 0 ... A ) ) e. ( ( -u A ... A ) ^m ( 0 ... A ) ) <-> ( ( coeff ` a ) |` ( 0 ... A ) ) : ( 0 ... A ) --> ( -u A ... A ) ) |
63 |
59 62
|
sylibr |
|- ( ( A e. NN0 /\ ( a e. ( Poly ` ZZ ) /\ A. e e. NN0 ( abs ` ( ( coeff ` a ) ` e ) ) <_ A ) ) -> ( ( coeff ` a ) |` ( 0 ... A ) ) e. ( ( -u A ... A ) ^m ( 0 ... A ) ) ) |
64 |
63
|
ex |
|- ( A e. NN0 -> ( ( a e. ( Poly ` ZZ ) /\ A. e e. NN0 ( abs ` ( ( coeff ` a ) ` e ) ) <_ A ) -> ( ( coeff ` a ) |` ( 0 ... A ) ) e. ( ( -u A ... A ) ^m ( 0 ... A ) ) ) ) |
65 |
31 64
|
syl5 |
|- ( A e. NN0 -> ( a e. { d e. ( Poly ` ZZ ) | ( d =/= 0p /\ ( deg ` d ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` d ) ` e ) ) <_ A ) } -> ( ( coeff ` a ) |` ( 0 ... A ) ) e. ( ( -u A ... A ) ^m ( 0 ... A ) ) ) ) |
66 |
|
simp2 |
|- ( ( a =/= 0p /\ ( deg ` a ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` a ) ` e ) ) <_ A ) -> ( deg ` a ) <_ A ) |
67 |
66
|
anim2i |
|- ( ( a e. ( Poly ` ZZ ) /\ ( a =/= 0p /\ ( deg ` a ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` a ) ` e ) ) <_ A ) ) -> ( a e. ( Poly ` ZZ ) /\ ( deg ` a ) <_ A ) ) |
68 |
28 67
|
sylbi |
|- ( a e. { d e. ( Poly ` ZZ ) | ( d =/= 0p /\ ( deg ` d ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` d ) ` e ) ) <_ A ) } -> ( a e. ( Poly ` ZZ ) /\ ( deg ` a ) <_ A ) ) |
69 |
|
neeq1 |
|- ( d = b -> ( d =/= 0p <-> b =/= 0p ) ) |
70 |
|
fveq2 |
|- ( d = b -> ( deg ` d ) = ( deg ` b ) ) |
71 |
70
|
breq1d |
|- ( d = b -> ( ( deg ` d ) <_ A <-> ( deg ` b ) <_ A ) ) |
72 |
|
fveq2 |
|- ( d = b -> ( coeff ` d ) = ( coeff ` b ) ) |
73 |
72
|
fveq1d |
|- ( d = b -> ( ( coeff ` d ) ` e ) = ( ( coeff ` b ) ` e ) ) |
74 |
73
|
fveq2d |
|- ( d = b -> ( abs ` ( ( coeff ` d ) ` e ) ) = ( abs ` ( ( coeff ` b ) ` e ) ) ) |
75 |
74
|
breq1d |
|- ( d = b -> ( ( abs ` ( ( coeff ` d ) ` e ) ) <_ A <-> ( abs ` ( ( coeff ` b ) ` e ) ) <_ A ) ) |
76 |
75
|
ralbidv |
|- ( d = b -> ( A. e e. NN0 ( abs ` ( ( coeff ` d ) ` e ) ) <_ A <-> A. e e. NN0 ( abs ` ( ( coeff ` b ) ` e ) ) <_ A ) ) |
77 |
69 71 76
|
3anbi123d |
|- ( d = b -> ( ( d =/= 0p /\ ( deg ` d ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` d ) ` e ) ) <_ A ) <-> ( b =/= 0p /\ ( deg ` b ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` b ) ` e ) ) <_ A ) ) ) |
78 |
77
|
elrab |
|- ( b e. { d e. ( Poly ` ZZ ) | ( d =/= 0p /\ ( deg ` d ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` d ) ` e ) ) <_ A ) } <-> ( b e. ( Poly ` ZZ ) /\ ( b =/= 0p /\ ( deg ` b ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` b ) ` e ) ) <_ A ) ) ) |
79 |
|
simp2 |
|- ( ( b =/= 0p /\ ( deg ` b ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` b ) ` e ) ) <_ A ) -> ( deg ` b ) <_ A ) |
80 |
79
|
anim2i |
|- ( ( b e. ( Poly ` ZZ ) /\ ( b =/= 0p /\ ( deg ` b ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` b ) ` e ) ) <_ A ) ) -> ( b e. ( Poly ` ZZ ) /\ ( deg ` b ) <_ A ) ) |
81 |
78 80
|
sylbi |
|- ( b e. { d e. ( Poly ` ZZ ) | ( d =/= 0p /\ ( deg ` d ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` d ) ` e ) ) <_ A ) } -> ( b e. ( Poly ` ZZ ) /\ ( deg ` b ) <_ A ) ) |
82 |
|
simplll |
|- ( ( ( ( a e. ( Poly ` ZZ ) /\ ( deg ` a ) <_ A ) /\ ( b e. ( Poly ` ZZ ) /\ ( deg ` b ) <_ A ) ) /\ ( A e. NN0 /\ ( ( coeff ` a ) |` ( 0 ... A ) ) = ( ( coeff ` b ) |` ( 0 ... A ) ) ) ) -> a e. ( Poly ` ZZ ) ) |
83 |
|
plyf |
|- ( a e. ( Poly ` ZZ ) -> a : CC --> CC ) |
84 |
|
ffn |
|- ( a : CC --> CC -> a Fn CC ) |
85 |
82 83 84
|
3syl |
|- ( ( ( ( a e. ( Poly ` ZZ ) /\ ( deg ` a ) <_ A ) /\ ( b e. ( Poly ` ZZ ) /\ ( deg ` b ) <_ A ) ) /\ ( A e. NN0 /\ ( ( coeff ` a ) |` ( 0 ... A ) ) = ( ( coeff ` b ) |` ( 0 ... A ) ) ) ) -> a Fn CC ) |
86 |
|
simplrl |
|- ( ( ( ( a e. ( Poly ` ZZ ) /\ ( deg ` a ) <_ A ) /\ ( b e. ( Poly ` ZZ ) /\ ( deg ` b ) <_ A ) ) /\ ( A e. NN0 /\ ( ( coeff ` a ) |` ( 0 ... A ) ) = ( ( coeff ` b ) |` ( 0 ... A ) ) ) ) -> b e. ( Poly ` ZZ ) ) |
87 |
|
plyf |
|- ( b e. ( Poly ` ZZ ) -> b : CC --> CC ) |
88 |
|
ffn |
|- ( b : CC --> CC -> b Fn CC ) |
89 |
86 87 88
|
3syl |
|- ( ( ( ( a e. ( Poly ` ZZ ) /\ ( deg ` a ) <_ A ) /\ ( b e. ( Poly ` ZZ ) /\ ( deg ` b ) <_ A ) ) /\ ( A e. NN0 /\ ( ( coeff ` a ) |` ( 0 ... A ) ) = ( ( coeff ` b ) |` ( 0 ... A ) ) ) ) -> b Fn CC ) |
90 |
|
simplrr |
|- ( ( ( ( ( a e. ( Poly ` ZZ ) /\ ( deg ` a ) <_ A ) /\ ( b e. ( Poly ` ZZ ) /\ ( deg ` b ) <_ A ) ) /\ ( A e. NN0 /\ ( ( coeff ` a ) |` ( 0 ... A ) ) = ( ( coeff ` b ) |` ( 0 ... A ) ) ) ) /\ c e. CC ) -> ( ( coeff ` a ) |` ( 0 ... A ) ) = ( ( coeff ` b ) |` ( 0 ... A ) ) ) |
91 |
90
|
adantr |
|- ( ( ( ( ( ( a e. ( Poly ` ZZ ) /\ ( deg ` a ) <_ A ) /\ ( b e. ( Poly ` ZZ ) /\ ( deg ` b ) <_ A ) ) /\ ( A e. NN0 /\ ( ( coeff ` a ) |` ( 0 ... A ) ) = ( ( coeff ` b ) |` ( 0 ... A ) ) ) ) /\ c e. CC ) /\ d e. ( 0 ... A ) ) -> ( ( coeff ` a ) |` ( 0 ... A ) ) = ( ( coeff ` b ) |` ( 0 ... A ) ) ) |
92 |
91
|
fveq1d |
|- ( ( ( ( ( ( a e. ( Poly ` ZZ ) /\ ( deg ` a ) <_ A ) /\ ( b e. ( Poly ` ZZ ) /\ ( deg ` b ) <_ A ) ) /\ ( A e. NN0 /\ ( ( coeff ` a ) |` ( 0 ... A ) ) = ( ( coeff ` b ) |` ( 0 ... A ) ) ) ) /\ c e. CC ) /\ d e. ( 0 ... A ) ) -> ( ( ( coeff ` a ) |` ( 0 ... A ) ) ` d ) = ( ( ( coeff ` b ) |` ( 0 ... A ) ) ` d ) ) |
93 |
|
fvres |
|- ( d e. ( 0 ... A ) -> ( ( ( coeff ` a ) |` ( 0 ... A ) ) ` d ) = ( ( coeff ` a ) ` d ) ) |
94 |
93
|
adantl |
|- ( ( ( ( ( ( a e. ( Poly ` ZZ ) /\ ( deg ` a ) <_ A ) /\ ( b e. ( Poly ` ZZ ) /\ ( deg ` b ) <_ A ) ) /\ ( A e. NN0 /\ ( ( coeff ` a ) |` ( 0 ... A ) ) = ( ( coeff ` b ) |` ( 0 ... A ) ) ) ) /\ c e. CC ) /\ d e. ( 0 ... A ) ) -> ( ( ( coeff ` a ) |` ( 0 ... A ) ) ` d ) = ( ( coeff ` a ) ` d ) ) |
95 |
|
fvres |
|- ( d e. ( 0 ... A ) -> ( ( ( coeff ` b ) |` ( 0 ... A ) ) ` d ) = ( ( coeff ` b ) ` d ) ) |
96 |
95
|
adantl |
|- ( ( ( ( ( ( a e. ( Poly ` ZZ ) /\ ( deg ` a ) <_ A ) /\ ( b e. ( Poly ` ZZ ) /\ ( deg ` b ) <_ A ) ) /\ ( A e. NN0 /\ ( ( coeff ` a ) |` ( 0 ... A ) ) = ( ( coeff ` b ) |` ( 0 ... A ) ) ) ) /\ c e. CC ) /\ d e. ( 0 ... A ) ) -> ( ( ( coeff ` b ) |` ( 0 ... A ) ) ` d ) = ( ( coeff ` b ) ` d ) ) |
97 |
92 94 96
|
3eqtr3d |
|- ( ( ( ( ( ( a e. ( Poly ` ZZ ) /\ ( deg ` a ) <_ A ) /\ ( b e. ( Poly ` ZZ ) /\ ( deg ` b ) <_ A ) ) /\ ( A e. NN0 /\ ( ( coeff ` a ) |` ( 0 ... A ) ) = ( ( coeff ` b ) |` ( 0 ... A ) ) ) ) /\ c e. CC ) /\ d e. ( 0 ... A ) ) -> ( ( coeff ` a ) ` d ) = ( ( coeff ` b ) ` d ) ) |
98 |
97
|
oveq1d |
|- ( ( ( ( ( ( a e. ( Poly ` ZZ ) /\ ( deg ` a ) <_ A ) /\ ( b e. ( Poly ` ZZ ) /\ ( deg ` b ) <_ A ) ) /\ ( A e. NN0 /\ ( ( coeff ` a ) |` ( 0 ... A ) ) = ( ( coeff ` b ) |` ( 0 ... A ) ) ) ) /\ c e. CC ) /\ d e. ( 0 ... A ) ) -> ( ( ( coeff ` a ) ` d ) x. ( c ^ d ) ) = ( ( ( coeff ` b ) ` d ) x. ( c ^ d ) ) ) |
99 |
98
|
sumeq2dv |
|- ( ( ( ( ( a e. ( Poly ` ZZ ) /\ ( deg ` a ) <_ A ) /\ ( b e. ( Poly ` ZZ ) /\ ( deg ` b ) <_ A ) ) /\ ( A e. NN0 /\ ( ( coeff ` a ) |` ( 0 ... A ) ) = ( ( coeff ` b ) |` ( 0 ... A ) ) ) ) /\ c e. CC ) -> sum_ d e. ( 0 ... A ) ( ( ( coeff ` a ) ` d ) x. ( c ^ d ) ) = sum_ d e. ( 0 ... A ) ( ( ( coeff ` b ) ` d ) x. ( c ^ d ) ) ) |
100 |
|
simp-4l |
|- ( ( ( ( ( a e. ( Poly ` ZZ ) /\ ( deg ` a ) <_ A ) /\ ( b e. ( Poly ` ZZ ) /\ ( deg ` b ) <_ A ) ) /\ ( A e. NN0 /\ ( ( coeff ` a ) |` ( 0 ... A ) ) = ( ( coeff ` b ) |` ( 0 ... A ) ) ) ) /\ c e. CC ) -> a e. ( Poly ` ZZ ) ) |
101 |
|
simp-4r |
|- ( ( ( ( ( a e. ( Poly ` ZZ ) /\ ( deg ` a ) <_ A ) /\ ( b e. ( Poly ` ZZ ) /\ ( deg ` b ) <_ A ) ) /\ ( A e. NN0 /\ ( ( coeff ` a ) |` ( 0 ... A ) ) = ( ( coeff ` b ) |` ( 0 ... A ) ) ) ) /\ c e. CC ) -> ( deg ` a ) <_ A ) |
102 |
|
dgrcl |
|- ( a e. ( Poly ` ZZ ) -> ( deg ` a ) e. NN0 ) |
103 |
|
nn0z |
|- ( ( deg ` a ) e. NN0 -> ( deg ` a ) e. ZZ ) |
104 |
100 102 103
|
3syl |
|- ( ( ( ( ( a e. ( Poly ` ZZ ) /\ ( deg ` a ) <_ A ) /\ ( b e. ( Poly ` ZZ ) /\ ( deg ` b ) <_ A ) ) /\ ( A e. NN0 /\ ( ( coeff ` a ) |` ( 0 ... A ) ) = ( ( coeff ` b ) |` ( 0 ... A ) ) ) ) /\ c e. CC ) -> ( deg ` a ) e. ZZ ) |
105 |
|
simplrl |
|- ( ( ( ( ( a e. ( Poly ` ZZ ) /\ ( deg ` a ) <_ A ) /\ ( b e. ( Poly ` ZZ ) /\ ( deg ` b ) <_ A ) ) /\ ( A e. NN0 /\ ( ( coeff ` a ) |` ( 0 ... A ) ) = ( ( coeff ` b ) |` ( 0 ... A ) ) ) ) /\ c e. CC ) -> A e. NN0 ) |
106 |
105
|
nn0zd |
|- ( ( ( ( ( a e. ( Poly ` ZZ ) /\ ( deg ` a ) <_ A ) /\ ( b e. ( Poly ` ZZ ) /\ ( deg ` b ) <_ A ) ) /\ ( A e. NN0 /\ ( ( coeff ` a ) |` ( 0 ... A ) ) = ( ( coeff ` b ) |` ( 0 ... A ) ) ) ) /\ c e. CC ) -> A e. ZZ ) |
107 |
|
eluz |
|- ( ( ( deg ` a ) e. ZZ /\ A e. ZZ ) -> ( A e. ( ZZ>= ` ( deg ` a ) ) <-> ( deg ` a ) <_ A ) ) |
108 |
104 106 107
|
syl2anc |
|- ( ( ( ( ( a e. ( Poly ` ZZ ) /\ ( deg ` a ) <_ A ) /\ ( b e. ( Poly ` ZZ ) /\ ( deg ` b ) <_ A ) ) /\ ( A e. NN0 /\ ( ( coeff ` a ) |` ( 0 ... A ) ) = ( ( coeff ` b ) |` ( 0 ... A ) ) ) ) /\ c e. CC ) -> ( A e. ( ZZ>= ` ( deg ` a ) ) <-> ( deg ` a ) <_ A ) ) |
109 |
101 108
|
mpbird |
|- ( ( ( ( ( a e. ( Poly ` ZZ ) /\ ( deg ` a ) <_ A ) /\ ( b e. ( Poly ` ZZ ) /\ ( deg ` b ) <_ A ) ) /\ ( A e. NN0 /\ ( ( coeff ` a ) |` ( 0 ... A ) ) = ( ( coeff ` b ) |` ( 0 ... A ) ) ) ) /\ c e. CC ) -> A e. ( ZZ>= ` ( deg ` a ) ) ) |
110 |
|
simpr |
|- ( ( ( ( ( a e. ( Poly ` ZZ ) /\ ( deg ` a ) <_ A ) /\ ( b e. ( Poly ` ZZ ) /\ ( deg ` b ) <_ A ) ) /\ ( A e. NN0 /\ ( ( coeff ` a ) |` ( 0 ... A ) ) = ( ( coeff ` b ) |` ( 0 ... A ) ) ) ) /\ c e. CC ) -> c e. CC ) |
111 |
|
eqid |
|- ( deg ` a ) = ( deg ` a ) |
112 |
33 111
|
coeid3 |
|- ( ( a e. ( Poly ` ZZ ) /\ A e. ( ZZ>= ` ( deg ` a ) ) /\ c e. CC ) -> ( a ` c ) = sum_ d e. ( 0 ... A ) ( ( ( coeff ` a ) ` d ) x. ( c ^ d ) ) ) |
113 |
100 109 110 112
|
syl3anc |
|- ( ( ( ( ( a e. ( Poly ` ZZ ) /\ ( deg ` a ) <_ A ) /\ ( b e. ( Poly ` ZZ ) /\ ( deg ` b ) <_ A ) ) /\ ( A e. NN0 /\ ( ( coeff ` a ) |` ( 0 ... A ) ) = ( ( coeff ` b ) |` ( 0 ... A ) ) ) ) /\ c e. CC ) -> ( a ` c ) = sum_ d e. ( 0 ... A ) ( ( ( coeff ` a ) ` d ) x. ( c ^ d ) ) ) |
114 |
|
simp1rl |
|- ( ( ( ( a e. ( Poly ` ZZ ) /\ ( deg ` a ) <_ A ) /\ ( b e. ( Poly ` ZZ ) /\ ( deg ` b ) <_ A ) ) /\ ( A e. NN0 /\ ( ( coeff ` a ) |` ( 0 ... A ) ) = ( ( coeff ` b ) |` ( 0 ... A ) ) ) /\ c e. CC ) -> b e. ( Poly ` ZZ ) ) |
115 |
114
|
3expa |
|- ( ( ( ( ( a e. ( Poly ` ZZ ) /\ ( deg ` a ) <_ A ) /\ ( b e. ( Poly ` ZZ ) /\ ( deg ` b ) <_ A ) ) /\ ( A e. NN0 /\ ( ( coeff ` a ) |` ( 0 ... A ) ) = ( ( coeff ` b ) |` ( 0 ... A ) ) ) ) /\ c e. CC ) -> b e. ( Poly ` ZZ ) ) |
116 |
|
simplrr |
|- ( ( ( ( a e. ( Poly ` ZZ ) /\ ( deg ` a ) <_ A ) /\ ( b e. ( Poly ` ZZ ) /\ ( deg ` b ) <_ A ) ) /\ ( A e. NN0 /\ ( ( coeff ` a ) |` ( 0 ... A ) ) = ( ( coeff ` b ) |` ( 0 ... A ) ) ) ) -> ( deg ` b ) <_ A ) |
117 |
116
|
adantr |
|- ( ( ( ( ( a e. ( Poly ` ZZ ) /\ ( deg ` a ) <_ A ) /\ ( b e. ( Poly ` ZZ ) /\ ( deg ` b ) <_ A ) ) /\ ( A e. NN0 /\ ( ( coeff ` a ) |` ( 0 ... A ) ) = ( ( coeff ` b ) |` ( 0 ... A ) ) ) ) /\ c e. CC ) -> ( deg ` b ) <_ A ) |
118 |
|
dgrcl |
|- ( b e. ( Poly ` ZZ ) -> ( deg ` b ) e. NN0 ) |
119 |
|
nn0z |
|- ( ( deg ` b ) e. NN0 -> ( deg ` b ) e. ZZ ) |
120 |
115 118 119
|
3syl |
|- ( ( ( ( ( a e. ( Poly ` ZZ ) /\ ( deg ` a ) <_ A ) /\ ( b e. ( Poly ` ZZ ) /\ ( deg ` b ) <_ A ) ) /\ ( A e. NN0 /\ ( ( coeff ` a ) |` ( 0 ... A ) ) = ( ( coeff ` b ) |` ( 0 ... A ) ) ) ) /\ c e. CC ) -> ( deg ` b ) e. ZZ ) |
121 |
|
eluz |
|- ( ( ( deg ` b ) e. ZZ /\ A e. ZZ ) -> ( A e. ( ZZ>= ` ( deg ` b ) ) <-> ( deg ` b ) <_ A ) ) |
122 |
120 106 121
|
syl2anc |
|- ( ( ( ( ( a e. ( Poly ` ZZ ) /\ ( deg ` a ) <_ A ) /\ ( b e. ( Poly ` ZZ ) /\ ( deg ` b ) <_ A ) ) /\ ( A e. NN0 /\ ( ( coeff ` a ) |` ( 0 ... A ) ) = ( ( coeff ` b ) |` ( 0 ... A ) ) ) ) /\ c e. CC ) -> ( A e. ( ZZ>= ` ( deg ` b ) ) <-> ( deg ` b ) <_ A ) ) |
123 |
117 122
|
mpbird |
|- ( ( ( ( ( a e. ( Poly ` ZZ ) /\ ( deg ` a ) <_ A ) /\ ( b e. ( Poly ` ZZ ) /\ ( deg ` b ) <_ A ) ) /\ ( A e. NN0 /\ ( ( coeff ` a ) |` ( 0 ... A ) ) = ( ( coeff ` b ) |` ( 0 ... A ) ) ) ) /\ c e. CC ) -> A e. ( ZZ>= ` ( deg ` b ) ) ) |
124 |
|
eqid |
|- ( coeff ` b ) = ( coeff ` b ) |
125 |
|
eqid |
|- ( deg ` b ) = ( deg ` b ) |
126 |
124 125
|
coeid3 |
|- ( ( b e. ( Poly ` ZZ ) /\ A e. ( ZZ>= ` ( deg ` b ) ) /\ c e. CC ) -> ( b ` c ) = sum_ d e. ( 0 ... A ) ( ( ( coeff ` b ) ` d ) x. ( c ^ d ) ) ) |
127 |
115 123 110 126
|
syl3anc |
|- ( ( ( ( ( a e. ( Poly ` ZZ ) /\ ( deg ` a ) <_ A ) /\ ( b e. ( Poly ` ZZ ) /\ ( deg ` b ) <_ A ) ) /\ ( A e. NN0 /\ ( ( coeff ` a ) |` ( 0 ... A ) ) = ( ( coeff ` b ) |` ( 0 ... A ) ) ) ) /\ c e. CC ) -> ( b ` c ) = sum_ d e. ( 0 ... A ) ( ( ( coeff ` b ) ` d ) x. ( c ^ d ) ) ) |
128 |
99 113 127
|
3eqtr4d |
|- ( ( ( ( ( a e. ( Poly ` ZZ ) /\ ( deg ` a ) <_ A ) /\ ( b e. ( Poly ` ZZ ) /\ ( deg ` b ) <_ A ) ) /\ ( A e. NN0 /\ ( ( coeff ` a ) |` ( 0 ... A ) ) = ( ( coeff ` b ) |` ( 0 ... A ) ) ) ) /\ c e. CC ) -> ( a ` c ) = ( b ` c ) ) |
129 |
85 89 128
|
eqfnfvd |
|- ( ( ( ( a e. ( Poly ` ZZ ) /\ ( deg ` a ) <_ A ) /\ ( b e. ( Poly ` ZZ ) /\ ( deg ` b ) <_ A ) ) /\ ( A e. NN0 /\ ( ( coeff ` a ) |` ( 0 ... A ) ) = ( ( coeff ` b ) |` ( 0 ... A ) ) ) ) -> a = b ) |
130 |
129
|
expr |
|- ( ( ( ( a e. ( Poly ` ZZ ) /\ ( deg ` a ) <_ A ) /\ ( b e. ( Poly ` ZZ ) /\ ( deg ` b ) <_ A ) ) /\ A e. NN0 ) -> ( ( ( coeff ` a ) |` ( 0 ... A ) ) = ( ( coeff ` b ) |` ( 0 ... A ) ) -> a = b ) ) |
131 |
|
fveq2 |
|- ( a = b -> ( coeff ` a ) = ( coeff ` b ) ) |
132 |
131
|
reseq1d |
|- ( a = b -> ( ( coeff ` a ) |` ( 0 ... A ) ) = ( ( coeff ` b ) |` ( 0 ... A ) ) ) |
133 |
130 132
|
impbid1 |
|- ( ( ( ( a e. ( Poly ` ZZ ) /\ ( deg ` a ) <_ A ) /\ ( b e. ( Poly ` ZZ ) /\ ( deg ` b ) <_ A ) ) /\ A e. NN0 ) -> ( ( ( coeff ` a ) |` ( 0 ... A ) ) = ( ( coeff ` b ) |` ( 0 ... A ) ) <-> a = b ) ) |
134 |
133
|
expcom |
|- ( A e. NN0 -> ( ( ( a e. ( Poly ` ZZ ) /\ ( deg ` a ) <_ A ) /\ ( b e. ( Poly ` ZZ ) /\ ( deg ` b ) <_ A ) ) -> ( ( ( coeff ` a ) |` ( 0 ... A ) ) = ( ( coeff ` b ) |` ( 0 ... A ) ) <-> a = b ) ) ) |
135 |
68 81 134
|
syl2ani |
|- ( A e. NN0 -> ( ( a e. { d e. ( Poly ` ZZ ) | ( d =/= 0p /\ ( deg ` d ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` d ) ` e ) ) <_ A ) } /\ b e. { d e. ( Poly ` ZZ ) | ( d =/= 0p /\ ( deg ` d ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` d ) ` e ) ) <_ A ) } ) -> ( ( ( coeff ` a ) |` ( 0 ... A ) ) = ( ( coeff ` b ) |` ( 0 ... A ) ) <-> a = b ) ) ) |
136 |
65 135
|
dom2d |
|- ( A e. NN0 -> ( ( ( -u A ... A ) ^m ( 0 ... A ) ) e. _V -> { d e. ( Poly ` ZZ ) | ( d =/= 0p /\ ( deg ` d ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` d ) ` e ) ) <_ A ) } ~<_ ( ( -u A ... A ) ^m ( 0 ... A ) ) ) ) |
137 |
18 136
|
mpi |
|- ( A e. NN0 -> { d e. ( Poly ` ZZ ) | ( d =/= 0p /\ ( deg ` d ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` d ) ` e ) ) <_ A ) } ~<_ ( ( -u A ... A ) ^m ( 0 ... A ) ) ) |
138 |
|
domfi |
|- ( ( ( ( -u A ... A ) ^m ( 0 ... A ) ) e. Fin /\ { d e. ( Poly ` ZZ ) | ( d =/= 0p /\ ( deg ` d ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` d ) ` e ) ) <_ A ) } ~<_ ( ( -u A ... A ) ^m ( 0 ... A ) ) ) -> { d e. ( Poly ` ZZ ) | ( d =/= 0p /\ ( deg ` d ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` d ) ` e ) ) <_ A ) } e. Fin ) |
139 |
17 137 138
|
syl2anc |
|- ( A e. NN0 -> { d e. ( Poly ` ZZ ) | ( d =/= 0p /\ ( deg ` d ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` d ) ` e ) ) <_ A ) } e. Fin ) |
140 |
|
neeq1 |
|- ( d = c -> ( d =/= 0p <-> c =/= 0p ) ) |
141 |
|
fveq2 |
|- ( d = c -> ( deg ` d ) = ( deg ` c ) ) |
142 |
141
|
breq1d |
|- ( d = c -> ( ( deg ` d ) <_ A <-> ( deg ` c ) <_ A ) ) |
143 |
|
fveq2 |
|- ( d = c -> ( coeff ` d ) = ( coeff ` c ) ) |
144 |
143
|
fveq1d |
|- ( d = c -> ( ( coeff ` d ) ` e ) = ( ( coeff ` c ) ` e ) ) |
145 |
144
|
fveq2d |
|- ( d = c -> ( abs ` ( ( coeff ` d ) ` e ) ) = ( abs ` ( ( coeff ` c ) ` e ) ) ) |
146 |
145
|
breq1d |
|- ( d = c -> ( ( abs ` ( ( coeff ` d ) ` e ) ) <_ A <-> ( abs ` ( ( coeff ` c ) ` e ) ) <_ A ) ) |
147 |
146
|
ralbidv |
|- ( d = c -> ( A. e e. NN0 ( abs ` ( ( coeff ` d ) ` e ) ) <_ A <-> A. e e. NN0 ( abs ` ( ( coeff ` c ) ` e ) ) <_ A ) ) |
148 |
140 142 147
|
3anbi123d |
|- ( d = c -> ( ( d =/= 0p /\ ( deg ` d ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` d ) ` e ) ) <_ A ) <-> ( c =/= 0p /\ ( deg ` c ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` c ) ` e ) ) <_ A ) ) ) |
149 |
148
|
elrab |
|- ( c e. { d e. ( Poly ` ZZ ) | ( d =/= 0p /\ ( deg ` d ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` d ) ` e ) ) <_ A ) } <-> ( c e. ( Poly ` ZZ ) /\ ( c =/= 0p /\ ( deg ` c ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` c ) ` e ) ) <_ A ) ) ) |
150 |
|
simp1 |
|- ( ( c =/= 0p /\ ( deg ` c ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` c ) ` e ) ) <_ A ) -> c =/= 0p ) |
151 |
150
|
anim2i |
|- ( ( c e. ( Poly ` ZZ ) /\ ( c =/= 0p /\ ( deg ` c ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` c ) ` e ) ) <_ A ) ) -> ( c e. ( Poly ` ZZ ) /\ c =/= 0p ) ) |
152 |
149 151
|
sylbi |
|- ( c e. { d e. ( Poly ` ZZ ) | ( d =/= 0p /\ ( deg ` d ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` d ) ` e ) ) <_ A ) } -> ( c e. ( Poly ` ZZ ) /\ c =/= 0p ) ) |
153 |
|
fveqeq2 |
|- ( b = a -> ( ( c ` b ) = 0 <-> ( c ` a ) = 0 ) ) |
154 |
153
|
elrab |
|- ( a e. { b e. CC | ( c ` b ) = 0 } <-> ( a e. CC /\ ( c ` a ) = 0 ) ) |
155 |
|
plyf |
|- ( c e. ( Poly ` ZZ ) -> c : CC --> CC ) |
156 |
155
|
ffnd |
|- ( c e. ( Poly ` ZZ ) -> c Fn CC ) |
157 |
156
|
adantr |
|- ( ( c e. ( Poly ` ZZ ) /\ c =/= 0p ) -> c Fn CC ) |
158 |
|
fniniseg |
|- ( c Fn CC -> ( a e. ( `' c " { 0 } ) <-> ( a e. CC /\ ( c ` a ) = 0 ) ) ) |
159 |
157 158
|
syl |
|- ( ( c e. ( Poly ` ZZ ) /\ c =/= 0p ) -> ( a e. ( `' c " { 0 } ) <-> ( a e. CC /\ ( c ` a ) = 0 ) ) ) |
160 |
154 159
|
bitr4id |
|- ( ( c e. ( Poly ` ZZ ) /\ c =/= 0p ) -> ( a e. { b e. CC | ( c ` b ) = 0 } <-> a e. ( `' c " { 0 } ) ) ) |
161 |
160
|
eqrdv |
|- ( ( c e. ( Poly ` ZZ ) /\ c =/= 0p ) -> { b e. CC | ( c ` b ) = 0 } = ( `' c " { 0 } ) ) |
162 |
|
eqid |
|- ( `' c " { 0 } ) = ( `' c " { 0 } ) |
163 |
162
|
fta1 |
|- ( ( c e. ( Poly ` ZZ ) /\ c =/= 0p ) -> ( ( `' c " { 0 } ) e. Fin /\ ( # ` ( `' c " { 0 } ) ) <_ ( deg ` c ) ) ) |
164 |
163
|
simpld |
|- ( ( c e. ( Poly ` ZZ ) /\ c =/= 0p ) -> ( `' c " { 0 } ) e. Fin ) |
165 |
161 164
|
eqeltrd |
|- ( ( c e. ( Poly ` ZZ ) /\ c =/= 0p ) -> { b e. CC | ( c ` b ) = 0 } e. Fin ) |
166 |
165
|
a1i |
|- ( A e. NN0 -> ( ( c e. ( Poly ` ZZ ) /\ c =/= 0p ) -> { b e. CC | ( c ` b ) = 0 } e. Fin ) ) |
167 |
152 166
|
syl5 |
|- ( A e. NN0 -> ( c e. { d e. ( Poly ` ZZ ) | ( d =/= 0p /\ ( deg ` d ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` d ) ` e ) ) <_ A ) } -> { b e. CC | ( c ` b ) = 0 } e. Fin ) ) |
168 |
167
|
ralrimiv |
|- ( A e. NN0 -> A. c e. { d e. ( Poly ` ZZ ) | ( d =/= 0p /\ ( deg ` d ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` d ) ` e ) ) <_ A ) } { b e. CC | ( c ` b ) = 0 } e. Fin ) |
169 |
|
iunfi |
|- ( ( { d e. ( Poly ` ZZ ) | ( d =/= 0p /\ ( deg ` d ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` d ) ` e ) ) <_ A ) } e. Fin /\ A. c e. { d e. ( Poly ` ZZ ) | ( d =/= 0p /\ ( deg ` d ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` d ) ` e ) ) <_ A ) } { b e. CC | ( c ` b ) = 0 } e. Fin ) -> U_ c e. { d e. ( Poly ` ZZ ) | ( d =/= 0p /\ ( deg ` d ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` d ) ` e ) ) <_ A ) } { b e. CC | ( c ` b ) = 0 } e. Fin ) |
170 |
139 168 169
|
syl2anc |
|- ( A e. NN0 -> U_ c e. { d e. ( Poly ` ZZ ) | ( d =/= 0p /\ ( deg ` d ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` d ) ` e ) ) <_ A ) } { b e. CC | ( c ` b ) = 0 } e. Fin ) |
171 |
12 170
|
eqeltrrid |
|- ( A e. NN0 -> { b e. CC | E. c e. { d e. ( Poly ` ZZ ) | ( d =/= 0p /\ ( deg ` d ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` d ) ` e ) ) <_ A ) } ( c ` b ) = 0 } e. Fin ) |
172 |
11 171
|
eqeltrd |
|- ( A e. NN0 -> ( H ` A ) e. Fin ) |