Step |
Hyp |
Ref |
Expression |
1 |
|
aannenlem.a |
|- H = ( a e. NN0 |-> { b e. CC | E. c e. { d e. ( Poly ` ZZ ) | ( d =/= 0p /\ ( deg ` d ) <_ a /\ A. e e. NN0 ( abs ` ( ( coeff ` d ) ` e ) ) <_ a ) } ( c ` b ) = 0 } ) |
2 |
1
|
aannenlem2 |
|- AA = U. ran H |
3 |
|
omelon |
|- _om e. On |
4 |
|
nn0ennn |
|- NN0 ~~ NN |
5 |
|
nnenom |
|- NN ~~ _om |
6 |
4 5
|
entri |
|- NN0 ~~ _om |
7 |
6
|
ensymi |
|- _om ~~ NN0 |
8 |
|
isnumi |
|- ( ( _om e. On /\ _om ~~ NN0 ) -> NN0 e. dom card ) |
9 |
3 7 8
|
mp2an |
|- NN0 e. dom card |
10 |
|
cnex |
|- CC e. _V |
11 |
10
|
rabex |
|- { b e. CC | E. c e. { d e. ( Poly ` ZZ ) | ( d =/= 0p /\ ( deg ` d ) <_ a /\ A. e e. NN0 ( abs ` ( ( coeff ` d ) ` e ) ) <_ a ) } ( c ` b ) = 0 } e. _V |
12 |
11 1
|
fnmpti |
|- H Fn NN0 |
13 |
|
dffn4 |
|- ( H Fn NN0 <-> H : NN0 -onto-> ran H ) |
14 |
12 13
|
mpbi |
|- H : NN0 -onto-> ran H |
15 |
|
fodomnum |
|- ( NN0 e. dom card -> ( H : NN0 -onto-> ran H -> ran H ~<_ NN0 ) ) |
16 |
9 14 15
|
mp2 |
|- ran H ~<_ NN0 |
17 |
|
domentr |
|- ( ( ran H ~<_ NN0 /\ NN0 ~~ _om ) -> ran H ~<_ _om ) |
18 |
16 6 17
|
mp2an |
|- ran H ~<_ _om |
19 |
|
fvelrnb |
|- ( H Fn NN0 -> ( f e. ran H <-> E. g e. NN0 ( H ` g ) = f ) ) |
20 |
12 19
|
ax-mp |
|- ( f e. ran H <-> E. g e. NN0 ( H ` g ) = f ) |
21 |
1
|
aannenlem1 |
|- ( g e. NN0 -> ( H ` g ) e. Fin ) |
22 |
|
eleq1 |
|- ( ( H ` g ) = f -> ( ( H ` g ) e. Fin <-> f e. Fin ) ) |
23 |
21 22
|
syl5ibcom |
|- ( g e. NN0 -> ( ( H ` g ) = f -> f e. Fin ) ) |
24 |
23
|
rexlimiv |
|- ( E. g e. NN0 ( H ` g ) = f -> f e. Fin ) |
25 |
20 24
|
sylbi |
|- ( f e. ran H -> f e. Fin ) |
26 |
25
|
ssriv |
|- ran H C_ Fin |
27 |
|
aasscn |
|- AA C_ CC |
28 |
2 27
|
eqsstrri |
|- U. ran H C_ CC |
29 |
|
soss |
|- ( U. ran H C_ CC -> ( f Or CC -> f Or U. ran H ) ) |
30 |
28 29
|
ax-mp |
|- ( f Or CC -> f Or U. ran H ) |
31 |
|
iunfictbso |
|- ( ( ran H ~<_ _om /\ ran H C_ Fin /\ f Or U. ran H ) -> U. ran H ~<_ _om ) |
32 |
18 26 30 31
|
mp3an12i |
|- ( f Or CC -> U. ran H ~<_ _om ) |
33 |
2 32
|
eqbrtrid |
|- ( f Or CC -> AA ~<_ _om ) |
34 |
|
cnso |
|- E. f f Or CC |
35 |
33 34
|
exlimiiv |
|- AA ~<_ _om |
36 |
5
|
ensymi |
|- _om ~~ NN |
37 |
|
domentr |
|- ( ( AA ~<_ _om /\ _om ~~ NN ) -> AA ~<_ NN ) |
38 |
35 36 37
|
mp2an |
|- AA ~<_ NN |
39 |
10 27
|
ssexi |
|- AA e. _V |
40 |
|
nnssq |
|- NN C_ QQ |
41 |
|
qssaa |
|- QQ C_ AA |
42 |
40 41
|
sstri |
|- NN C_ AA |
43 |
|
ssdomg |
|- ( AA e. _V -> ( NN C_ AA -> NN ~<_ AA ) ) |
44 |
39 42 43
|
mp2 |
|- NN ~<_ AA |
45 |
|
sbth |
|- ( ( AA ~<_ NN /\ NN ~<_ AA ) -> AA ~~ NN ) |
46 |
38 44 45
|
mp2an |
|- AA ~~ NN |