| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elaa |  |-  ( A e. AA <-> ( A e. CC /\ E. f e. ( ( Poly ` ZZ ) \ { 0p } ) ( f ` A ) = 0 ) ) | 
						
							| 2 | 1 | simprbi |  |-  ( A e. AA -> E. f e. ( ( Poly ` ZZ ) \ { 0p } ) ( f ` A ) = 0 ) | 
						
							| 3 | 2 | adantr |  |-  ( ( A e. AA /\ A =/= 0 ) -> E. f e. ( ( Poly ` ZZ ) \ { 0p } ) ( f ` A ) = 0 ) | 
						
							| 4 |  | aacn |  |-  ( A e. AA -> A e. CC ) | 
						
							| 5 |  | reccl |  |-  ( ( A e. CC /\ A =/= 0 ) -> ( 1 / A ) e. CC ) | 
						
							| 6 | 4 5 | sylan |  |-  ( ( A e. AA /\ A =/= 0 ) -> ( 1 / A ) e. CC ) | 
						
							| 7 | 6 | adantr |  |-  ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> ( 1 / A ) e. CC ) | 
						
							| 8 |  | zsscn |  |-  ZZ C_ CC | 
						
							| 9 | 8 | a1i |  |-  ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> ZZ C_ CC ) | 
						
							| 10 |  | simprl |  |-  ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> f e. ( ( Poly ` ZZ ) \ { 0p } ) ) | 
						
							| 11 |  | eldifsn |  |-  ( f e. ( ( Poly ` ZZ ) \ { 0p } ) <-> ( f e. ( Poly ` ZZ ) /\ f =/= 0p ) ) | 
						
							| 12 | 10 11 | sylib |  |-  ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> ( f e. ( Poly ` ZZ ) /\ f =/= 0p ) ) | 
						
							| 13 | 12 | simpld |  |-  ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> f e. ( Poly ` ZZ ) ) | 
						
							| 14 |  | dgrcl |  |-  ( f e. ( Poly ` ZZ ) -> ( deg ` f ) e. NN0 ) | 
						
							| 15 | 13 14 | syl |  |-  ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> ( deg ` f ) e. NN0 ) | 
						
							| 16 | 13 | adantr |  |-  ( ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) /\ k e. ( 0 ... ( deg ` f ) ) ) -> f e. ( Poly ` ZZ ) ) | 
						
							| 17 |  | 0z |  |-  0 e. ZZ | 
						
							| 18 |  | eqid |  |-  ( coeff ` f ) = ( coeff ` f ) | 
						
							| 19 | 18 | coef2 |  |-  ( ( f e. ( Poly ` ZZ ) /\ 0 e. ZZ ) -> ( coeff ` f ) : NN0 --> ZZ ) | 
						
							| 20 | 16 17 19 | sylancl |  |-  ( ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) /\ k e. ( 0 ... ( deg ` f ) ) ) -> ( coeff ` f ) : NN0 --> ZZ ) | 
						
							| 21 |  | fznn0sub |  |-  ( k e. ( 0 ... ( deg ` f ) ) -> ( ( deg ` f ) - k ) e. NN0 ) | 
						
							| 22 | 21 | adantl |  |-  ( ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) /\ k e. ( 0 ... ( deg ` f ) ) ) -> ( ( deg ` f ) - k ) e. NN0 ) | 
						
							| 23 | 20 22 | ffvelcdmd |  |-  ( ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) /\ k e. ( 0 ... ( deg ` f ) ) ) -> ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) e. ZZ ) | 
						
							| 24 | 9 15 23 | elplyd |  |-  ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> ( z e. CC |-> sum_ k e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( z ^ k ) ) ) e. ( Poly ` ZZ ) ) | 
						
							| 25 |  | 0cn |  |-  0 e. CC | 
						
							| 26 |  | eqid |  |-  ( coeff ` ( z e. CC |-> sum_ k e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( z ^ k ) ) ) ) = ( coeff ` ( z e. CC |-> sum_ k e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( z ^ k ) ) ) ) | 
						
							| 27 | 26 | coefv0 |  |-  ( ( z e. CC |-> sum_ k e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( z ^ k ) ) ) e. ( Poly ` ZZ ) -> ( ( z e. CC |-> sum_ k e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( z ^ k ) ) ) ` 0 ) = ( ( coeff ` ( z e. CC |-> sum_ k e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( z ^ k ) ) ) ) ` 0 ) ) | 
						
							| 28 | 24 27 | syl |  |-  ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> ( ( z e. CC |-> sum_ k e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( z ^ k ) ) ) ` 0 ) = ( ( coeff ` ( z e. CC |-> sum_ k e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( z ^ k ) ) ) ) ` 0 ) ) | 
						
							| 29 | 23 | zcnd |  |-  ( ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) /\ k e. ( 0 ... ( deg ` f ) ) ) -> ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) e. CC ) | 
						
							| 30 |  | eqidd |  |-  ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> ( z e. CC |-> sum_ k e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( z ^ k ) ) ) = ( z e. CC |-> sum_ k e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( z ^ k ) ) ) ) | 
						
							| 31 | 24 15 29 30 | coeeq2 |  |-  ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> ( coeff ` ( z e. CC |-> sum_ k e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( z ^ k ) ) ) ) = ( k e. NN0 |-> if ( k <_ ( deg ` f ) , ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) , 0 ) ) ) | 
						
							| 32 | 31 | fveq1d |  |-  ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> ( ( coeff ` ( z e. CC |-> sum_ k e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( z ^ k ) ) ) ) ` 0 ) = ( ( k e. NN0 |-> if ( k <_ ( deg ` f ) , ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) , 0 ) ) ` 0 ) ) | 
						
							| 33 |  | 0nn0 |  |-  0 e. NN0 | 
						
							| 34 |  | breq1 |  |-  ( k = 0 -> ( k <_ ( deg ` f ) <-> 0 <_ ( deg ` f ) ) ) | 
						
							| 35 |  | oveq2 |  |-  ( k = 0 -> ( ( deg ` f ) - k ) = ( ( deg ` f ) - 0 ) ) | 
						
							| 36 | 35 | fveq2d |  |-  ( k = 0 -> ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) = ( ( coeff ` f ) ` ( ( deg ` f ) - 0 ) ) ) | 
						
							| 37 | 34 36 | ifbieq1d |  |-  ( k = 0 -> if ( k <_ ( deg ` f ) , ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) , 0 ) = if ( 0 <_ ( deg ` f ) , ( ( coeff ` f ) ` ( ( deg ` f ) - 0 ) ) , 0 ) ) | 
						
							| 38 |  | eqid |  |-  ( k e. NN0 |-> if ( k <_ ( deg ` f ) , ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) , 0 ) ) = ( k e. NN0 |-> if ( k <_ ( deg ` f ) , ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) , 0 ) ) | 
						
							| 39 |  | fvex |  |-  ( ( coeff ` f ) ` ( ( deg ` f ) - 0 ) ) e. _V | 
						
							| 40 |  | c0ex |  |-  0 e. _V | 
						
							| 41 | 39 40 | ifex |  |-  if ( 0 <_ ( deg ` f ) , ( ( coeff ` f ) ` ( ( deg ` f ) - 0 ) ) , 0 ) e. _V | 
						
							| 42 | 37 38 41 | fvmpt |  |-  ( 0 e. NN0 -> ( ( k e. NN0 |-> if ( k <_ ( deg ` f ) , ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) , 0 ) ) ` 0 ) = if ( 0 <_ ( deg ` f ) , ( ( coeff ` f ) ` ( ( deg ` f ) - 0 ) ) , 0 ) ) | 
						
							| 43 | 33 42 | ax-mp |  |-  ( ( k e. NN0 |-> if ( k <_ ( deg ` f ) , ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) , 0 ) ) ` 0 ) = if ( 0 <_ ( deg ` f ) , ( ( coeff ` f ) ` ( ( deg ` f ) - 0 ) ) , 0 ) | 
						
							| 44 | 15 | nn0ge0d |  |-  ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> 0 <_ ( deg ` f ) ) | 
						
							| 45 | 44 | iftrued |  |-  ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> if ( 0 <_ ( deg ` f ) , ( ( coeff ` f ) ` ( ( deg ` f ) - 0 ) ) , 0 ) = ( ( coeff ` f ) ` ( ( deg ` f ) - 0 ) ) ) | 
						
							| 46 | 15 | nn0cnd |  |-  ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> ( deg ` f ) e. CC ) | 
						
							| 47 | 46 | subid1d |  |-  ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> ( ( deg ` f ) - 0 ) = ( deg ` f ) ) | 
						
							| 48 | 47 | fveq2d |  |-  ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> ( ( coeff ` f ) ` ( ( deg ` f ) - 0 ) ) = ( ( coeff ` f ) ` ( deg ` f ) ) ) | 
						
							| 49 | 45 48 | eqtrd |  |-  ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> if ( 0 <_ ( deg ` f ) , ( ( coeff ` f ) ` ( ( deg ` f ) - 0 ) ) , 0 ) = ( ( coeff ` f ) ` ( deg ` f ) ) ) | 
						
							| 50 | 43 49 | eqtrid |  |-  ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> ( ( k e. NN0 |-> if ( k <_ ( deg ` f ) , ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) , 0 ) ) ` 0 ) = ( ( coeff ` f ) ` ( deg ` f ) ) ) | 
						
							| 51 | 28 32 50 | 3eqtrd |  |-  ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> ( ( z e. CC |-> sum_ k e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( z ^ k ) ) ) ` 0 ) = ( ( coeff ` f ) ` ( deg ` f ) ) ) | 
						
							| 52 | 12 | simprd |  |-  ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> f =/= 0p ) | 
						
							| 53 |  | eqid |  |-  ( deg ` f ) = ( deg ` f ) | 
						
							| 54 | 53 18 | dgreq0 |  |-  ( f e. ( Poly ` ZZ ) -> ( f = 0p <-> ( ( coeff ` f ) ` ( deg ` f ) ) = 0 ) ) | 
						
							| 55 | 13 54 | syl |  |-  ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> ( f = 0p <-> ( ( coeff ` f ) ` ( deg ` f ) ) = 0 ) ) | 
						
							| 56 | 55 | necon3bid |  |-  ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> ( f =/= 0p <-> ( ( coeff ` f ) ` ( deg ` f ) ) =/= 0 ) ) | 
						
							| 57 | 52 56 | mpbid |  |-  ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> ( ( coeff ` f ) ` ( deg ` f ) ) =/= 0 ) | 
						
							| 58 | 51 57 | eqnetrd |  |-  ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> ( ( z e. CC |-> sum_ k e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( z ^ k ) ) ) ` 0 ) =/= 0 ) | 
						
							| 59 |  | ne0p |  |-  ( ( 0 e. CC /\ ( ( z e. CC |-> sum_ k e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( z ^ k ) ) ) ` 0 ) =/= 0 ) -> ( z e. CC |-> sum_ k e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( z ^ k ) ) ) =/= 0p ) | 
						
							| 60 | 25 58 59 | sylancr |  |-  ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> ( z e. CC |-> sum_ k e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( z ^ k ) ) ) =/= 0p ) | 
						
							| 61 |  | eldifsn |  |-  ( ( z e. CC |-> sum_ k e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( z ^ k ) ) ) e. ( ( Poly ` ZZ ) \ { 0p } ) <-> ( ( z e. CC |-> sum_ k e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( z ^ k ) ) ) e. ( Poly ` ZZ ) /\ ( z e. CC |-> sum_ k e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( z ^ k ) ) ) =/= 0p ) ) | 
						
							| 62 | 24 60 61 | sylanbrc |  |-  ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> ( z e. CC |-> sum_ k e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( z ^ k ) ) ) e. ( ( Poly ` ZZ ) \ { 0p } ) ) | 
						
							| 63 |  | oveq1 |  |-  ( z = ( 1 / A ) -> ( z ^ k ) = ( ( 1 / A ) ^ k ) ) | 
						
							| 64 | 63 | oveq2d |  |-  ( z = ( 1 / A ) -> ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( z ^ k ) ) = ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( ( 1 / A ) ^ k ) ) ) | 
						
							| 65 | 64 | sumeq2sdv |  |-  ( z = ( 1 / A ) -> sum_ k e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( z ^ k ) ) = sum_ k e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( ( 1 / A ) ^ k ) ) ) | 
						
							| 66 |  | eqid |  |-  ( z e. CC |-> sum_ k e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( z ^ k ) ) ) = ( z e. CC |-> sum_ k e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( z ^ k ) ) ) | 
						
							| 67 |  | sumex |  |-  sum_ k e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( ( 1 / A ) ^ k ) ) e. _V | 
						
							| 68 | 65 66 67 | fvmpt |  |-  ( ( 1 / A ) e. CC -> ( ( z e. CC |-> sum_ k e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( z ^ k ) ) ) ` ( 1 / A ) ) = sum_ k e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( ( 1 / A ) ^ k ) ) ) | 
						
							| 69 | 7 68 | syl |  |-  ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> ( ( z e. CC |-> sum_ k e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( z ^ k ) ) ) ` ( 1 / A ) ) = sum_ k e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( ( 1 / A ) ^ k ) ) ) | 
						
							| 70 | 18 | coef3 |  |-  ( f e. ( Poly ` ZZ ) -> ( coeff ` f ) : NN0 --> CC ) | 
						
							| 71 | 13 70 | syl |  |-  ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> ( coeff ` f ) : NN0 --> CC ) | 
						
							| 72 |  | elfznn0 |  |-  ( n e. ( 0 ... ( deg ` f ) ) -> n e. NN0 ) | 
						
							| 73 |  | ffvelcdm |  |-  ( ( ( coeff ` f ) : NN0 --> CC /\ n e. NN0 ) -> ( ( coeff ` f ) ` n ) e. CC ) | 
						
							| 74 | 71 72 73 | syl2an |  |-  ( ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) /\ n e. ( 0 ... ( deg ` f ) ) ) -> ( ( coeff ` f ) ` n ) e. CC ) | 
						
							| 75 | 4 | ad2antrr |  |-  ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> A e. CC ) | 
						
							| 76 |  | expcl |  |-  ( ( A e. CC /\ n e. NN0 ) -> ( A ^ n ) e. CC ) | 
						
							| 77 | 75 72 76 | syl2an |  |-  ( ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) /\ n e. ( 0 ... ( deg ` f ) ) ) -> ( A ^ n ) e. CC ) | 
						
							| 78 | 74 77 | mulcld |  |-  ( ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) /\ n e. ( 0 ... ( deg ` f ) ) ) -> ( ( ( coeff ` f ) ` n ) x. ( A ^ n ) ) e. CC ) | 
						
							| 79 | 75 15 | expcld |  |-  ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> ( A ^ ( deg ` f ) ) e. CC ) | 
						
							| 80 | 79 | adantr |  |-  ( ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) /\ n e. ( 0 ... ( deg ` f ) ) ) -> ( A ^ ( deg ` f ) ) e. CC ) | 
						
							| 81 |  | simplr |  |-  ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> A =/= 0 ) | 
						
							| 82 | 15 | nn0zd |  |-  ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> ( deg ` f ) e. ZZ ) | 
						
							| 83 | 75 81 82 | expne0d |  |-  ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> ( A ^ ( deg ` f ) ) =/= 0 ) | 
						
							| 84 | 83 | adantr |  |-  ( ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) /\ n e. ( 0 ... ( deg ` f ) ) ) -> ( A ^ ( deg ` f ) ) =/= 0 ) | 
						
							| 85 | 78 80 84 | divcld |  |-  ( ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) /\ n e. ( 0 ... ( deg ` f ) ) ) -> ( ( ( ( coeff ` f ) ` n ) x. ( A ^ n ) ) / ( A ^ ( deg ` f ) ) ) e. CC ) | 
						
							| 86 |  | fveq2 |  |-  ( n = ( ( 0 + ( deg ` f ) ) - k ) -> ( ( coeff ` f ) ` n ) = ( ( coeff ` f ) ` ( ( 0 + ( deg ` f ) ) - k ) ) ) | 
						
							| 87 |  | oveq2 |  |-  ( n = ( ( 0 + ( deg ` f ) ) - k ) -> ( A ^ n ) = ( A ^ ( ( 0 + ( deg ` f ) ) - k ) ) ) | 
						
							| 88 | 86 87 | oveq12d |  |-  ( n = ( ( 0 + ( deg ` f ) ) - k ) -> ( ( ( coeff ` f ) ` n ) x. ( A ^ n ) ) = ( ( ( coeff ` f ) ` ( ( 0 + ( deg ` f ) ) - k ) ) x. ( A ^ ( ( 0 + ( deg ` f ) ) - k ) ) ) ) | 
						
							| 89 | 88 | oveq1d |  |-  ( n = ( ( 0 + ( deg ` f ) ) - k ) -> ( ( ( ( coeff ` f ) ` n ) x. ( A ^ n ) ) / ( A ^ ( deg ` f ) ) ) = ( ( ( ( coeff ` f ) ` ( ( 0 + ( deg ` f ) ) - k ) ) x. ( A ^ ( ( 0 + ( deg ` f ) ) - k ) ) ) / ( A ^ ( deg ` f ) ) ) ) | 
						
							| 90 | 85 89 | fsumrev2 |  |-  ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> sum_ n e. ( 0 ... ( deg ` f ) ) ( ( ( ( coeff ` f ) ` n ) x. ( A ^ n ) ) / ( A ^ ( deg ` f ) ) ) = sum_ k e. ( 0 ... ( deg ` f ) ) ( ( ( ( coeff ` f ) ` ( ( 0 + ( deg ` f ) ) - k ) ) x. ( A ^ ( ( 0 + ( deg ` f ) ) - k ) ) ) / ( A ^ ( deg ` f ) ) ) ) | 
						
							| 91 | 46 | adantr |  |-  ( ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) /\ k e. ( 0 ... ( deg ` f ) ) ) -> ( deg ` f ) e. CC ) | 
						
							| 92 | 91 | addlidd |  |-  ( ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) /\ k e. ( 0 ... ( deg ` f ) ) ) -> ( 0 + ( deg ` f ) ) = ( deg ` f ) ) | 
						
							| 93 | 92 | oveq1d |  |-  ( ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) /\ k e. ( 0 ... ( deg ` f ) ) ) -> ( ( 0 + ( deg ` f ) ) - k ) = ( ( deg ` f ) - k ) ) | 
						
							| 94 | 93 | fveq2d |  |-  ( ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) /\ k e. ( 0 ... ( deg ` f ) ) ) -> ( ( coeff ` f ) ` ( ( 0 + ( deg ` f ) ) - k ) ) = ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) ) | 
						
							| 95 | 93 | oveq2d |  |-  ( ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) /\ k e. ( 0 ... ( deg ` f ) ) ) -> ( A ^ ( ( 0 + ( deg ` f ) ) - k ) ) = ( A ^ ( ( deg ` f ) - k ) ) ) | 
						
							| 96 | 75 | adantr |  |-  ( ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) /\ k e. ( 0 ... ( deg ` f ) ) ) -> A e. CC ) | 
						
							| 97 | 81 | adantr |  |-  ( ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) /\ k e. ( 0 ... ( deg ` f ) ) ) -> A =/= 0 ) | 
						
							| 98 |  | elfznn0 |  |-  ( k e. ( 0 ... ( deg ` f ) ) -> k e. NN0 ) | 
						
							| 99 | 98 | adantl |  |-  ( ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) /\ k e. ( 0 ... ( deg ` f ) ) ) -> k e. NN0 ) | 
						
							| 100 | 99 | nn0zd |  |-  ( ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) /\ k e. ( 0 ... ( deg ` f ) ) ) -> k e. ZZ ) | 
						
							| 101 | 82 | adantr |  |-  ( ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) /\ k e. ( 0 ... ( deg ` f ) ) ) -> ( deg ` f ) e. ZZ ) | 
						
							| 102 | 96 97 100 101 | expsubd |  |-  ( ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) /\ k e. ( 0 ... ( deg ` f ) ) ) -> ( A ^ ( ( deg ` f ) - k ) ) = ( ( A ^ ( deg ` f ) ) / ( A ^ k ) ) ) | 
						
							| 103 | 95 102 | eqtrd |  |-  ( ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) /\ k e. ( 0 ... ( deg ` f ) ) ) -> ( A ^ ( ( 0 + ( deg ` f ) ) - k ) ) = ( ( A ^ ( deg ` f ) ) / ( A ^ k ) ) ) | 
						
							| 104 | 94 103 | oveq12d |  |-  ( ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) /\ k e. ( 0 ... ( deg ` f ) ) ) -> ( ( ( coeff ` f ) ` ( ( 0 + ( deg ` f ) ) - k ) ) x. ( A ^ ( ( 0 + ( deg ` f ) ) - k ) ) ) = ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( ( A ^ ( deg ` f ) ) / ( A ^ k ) ) ) ) | 
						
							| 105 | 104 | oveq1d |  |-  ( ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) /\ k e. ( 0 ... ( deg ` f ) ) ) -> ( ( ( ( coeff ` f ) ` ( ( 0 + ( deg ` f ) ) - k ) ) x. ( A ^ ( ( 0 + ( deg ` f ) ) - k ) ) ) / ( A ^ ( deg ` f ) ) ) = ( ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( ( A ^ ( deg ` f ) ) / ( A ^ k ) ) ) / ( A ^ ( deg ` f ) ) ) ) | 
						
							| 106 | 79 | adantr |  |-  ( ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) /\ k e. ( 0 ... ( deg ` f ) ) ) -> ( A ^ ( deg ` f ) ) e. CC ) | 
						
							| 107 |  | expcl |  |-  ( ( A e. CC /\ k e. NN0 ) -> ( A ^ k ) e. CC ) | 
						
							| 108 | 75 98 107 | syl2an |  |-  ( ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) /\ k e. ( 0 ... ( deg ` f ) ) ) -> ( A ^ k ) e. CC ) | 
						
							| 109 | 96 97 100 | expne0d |  |-  ( ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) /\ k e. ( 0 ... ( deg ` f ) ) ) -> ( A ^ k ) =/= 0 ) | 
						
							| 110 | 106 108 109 | divcld |  |-  ( ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) /\ k e. ( 0 ... ( deg ` f ) ) ) -> ( ( A ^ ( deg ` f ) ) / ( A ^ k ) ) e. CC ) | 
						
							| 111 | 83 | adantr |  |-  ( ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) /\ k e. ( 0 ... ( deg ` f ) ) ) -> ( A ^ ( deg ` f ) ) =/= 0 ) | 
						
							| 112 | 29 110 106 111 | divassd |  |-  ( ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) /\ k e. ( 0 ... ( deg ` f ) ) ) -> ( ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( ( A ^ ( deg ` f ) ) / ( A ^ k ) ) ) / ( A ^ ( deg ` f ) ) ) = ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( ( ( A ^ ( deg ` f ) ) / ( A ^ k ) ) / ( A ^ ( deg ` f ) ) ) ) ) | 
						
							| 113 | 106 111 | dividd |  |-  ( ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) /\ k e. ( 0 ... ( deg ` f ) ) ) -> ( ( A ^ ( deg ` f ) ) / ( A ^ ( deg ` f ) ) ) = 1 ) | 
						
							| 114 | 113 | oveq1d |  |-  ( ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) /\ k e. ( 0 ... ( deg ` f ) ) ) -> ( ( ( A ^ ( deg ` f ) ) / ( A ^ ( deg ` f ) ) ) / ( A ^ k ) ) = ( 1 / ( A ^ k ) ) ) | 
						
							| 115 | 106 108 106 109 111 | divdiv32d |  |-  ( ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) /\ k e. ( 0 ... ( deg ` f ) ) ) -> ( ( ( A ^ ( deg ` f ) ) / ( A ^ k ) ) / ( A ^ ( deg ` f ) ) ) = ( ( ( A ^ ( deg ` f ) ) / ( A ^ ( deg ` f ) ) ) / ( A ^ k ) ) ) | 
						
							| 116 | 96 97 100 | exprecd |  |-  ( ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) /\ k e. ( 0 ... ( deg ` f ) ) ) -> ( ( 1 / A ) ^ k ) = ( 1 / ( A ^ k ) ) ) | 
						
							| 117 | 114 115 116 | 3eqtr4d |  |-  ( ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) /\ k e. ( 0 ... ( deg ` f ) ) ) -> ( ( ( A ^ ( deg ` f ) ) / ( A ^ k ) ) / ( A ^ ( deg ` f ) ) ) = ( ( 1 / A ) ^ k ) ) | 
						
							| 118 | 117 | oveq2d |  |-  ( ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) /\ k e. ( 0 ... ( deg ` f ) ) ) -> ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( ( ( A ^ ( deg ` f ) ) / ( A ^ k ) ) / ( A ^ ( deg ` f ) ) ) ) = ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( ( 1 / A ) ^ k ) ) ) | 
						
							| 119 | 105 112 118 | 3eqtrd |  |-  ( ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) /\ k e. ( 0 ... ( deg ` f ) ) ) -> ( ( ( ( coeff ` f ) ` ( ( 0 + ( deg ` f ) ) - k ) ) x. ( A ^ ( ( 0 + ( deg ` f ) ) - k ) ) ) / ( A ^ ( deg ` f ) ) ) = ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( ( 1 / A ) ^ k ) ) ) | 
						
							| 120 | 119 | sumeq2dv |  |-  ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> sum_ k e. ( 0 ... ( deg ` f ) ) ( ( ( ( coeff ` f ) ` ( ( 0 + ( deg ` f ) ) - k ) ) x. ( A ^ ( ( 0 + ( deg ` f ) ) - k ) ) ) / ( A ^ ( deg ` f ) ) ) = sum_ k e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( ( 1 / A ) ^ k ) ) ) | 
						
							| 121 | 90 120 | eqtrd |  |-  ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> sum_ n e. ( 0 ... ( deg ` f ) ) ( ( ( ( coeff ` f ) ` n ) x. ( A ^ n ) ) / ( A ^ ( deg ` f ) ) ) = sum_ k e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( ( 1 / A ) ^ k ) ) ) | 
						
							| 122 | 18 53 | coeid2 |  |-  ( ( f e. ( Poly ` ZZ ) /\ A e. CC ) -> ( f ` A ) = sum_ n e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` n ) x. ( A ^ n ) ) ) | 
						
							| 123 | 13 75 122 | syl2anc |  |-  ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> ( f ` A ) = sum_ n e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` n ) x. ( A ^ n ) ) ) | 
						
							| 124 |  | simprr |  |-  ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> ( f ` A ) = 0 ) | 
						
							| 125 | 123 124 | eqtr3d |  |-  ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> sum_ n e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` n ) x. ( A ^ n ) ) = 0 ) | 
						
							| 126 | 125 | oveq1d |  |-  ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> ( sum_ n e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` n ) x. ( A ^ n ) ) / ( A ^ ( deg ` f ) ) ) = ( 0 / ( A ^ ( deg ` f ) ) ) ) | 
						
							| 127 |  | fzfid |  |-  ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> ( 0 ... ( deg ` f ) ) e. Fin ) | 
						
							| 128 | 127 79 78 83 | fsumdivc |  |-  ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> ( sum_ n e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` n ) x. ( A ^ n ) ) / ( A ^ ( deg ` f ) ) ) = sum_ n e. ( 0 ... ( deg ` f ) ) ( ( ( ( coeff ` f ) ` n ) x. ( A ^ n ) ) / ( A ^ ( deg ` f ) ) ) ) | 
						
							| 129 | 79 83 | div0d |  |-  ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> ( 0 / ( A ^ ( deg ` f ) ) ) = 0 ) | 
						
							| 130 | 126 128 129 | 3eqtr3d |  |-  ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> sum_ n e. ( 0 ... ( deg ` f ) ) ( ( ( ( coeff ` f ) ` n ) x. ( A ^ n ) ) / ( A ^ ( deg ` f ) ) ) = 0 ) | 
						
							| 131 | 69 121 130 | 3eqtr2d |  |-  ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> ( ( z e. CC |-> sum_ k e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( z ^ k ) ) ) ` ( 1 / A ) ) = 0 ) | 
						
							| 132 |  | fveq1 |  |-  ( g = ( z e. CC |-> sum_ k e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( z ^ k ) ) ) -> ( g ` ( 1 / A ) ) = ( ( z e. CC |-> sum_ k e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( z ^ k ) ) ) ` ( 1 / A ) ) ) | 
						
							| 133 | 132 | eqeq1d |  |-  ( g = ( z e. CC |-> sum_ k e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( z ^ k ) ) ) -> ( ( g ` ( 1 / A ) ) = 0 <-> ( ( z e. CC |-> sum_ k e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( z ^ k ) ) ) ` ( 1 / A ) ) = 0 ) ) | 
						
							| 134 | 133 | rspcev |  |-  ( ( ( z e. CC |-> sum_ k e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( z ^ k ) ) ) e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( ( z e. CC |-> sum_ k e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` ( ( deg ` f ) - k ) ) x. ( z ^ k ) ) ) ` ( 1 / A ) ) = 0 ) -> E. g e. ( ( Poly ` ZZ ) \ { 0p } ) ( g ` ( 1 / A ) ) = 0 ) | 
						
							| 135 | 62 131 134 | syl2anc |  |-  ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> E. g e. ( ( Poly ` ZZ ) \ { 0p } ) ( g ` ( 1 / A ) ) = 0 ) | 
						
							| 136 |  | elaa |  |-  ( ( 1 / A ) e. AA <-> ( ( 1 / A ) e. CC /\ E. g e. ( ( Poly ` ZZ ) \ { 0p } ) ( g ` ( 1 / A ) ) = 0 ) ) | 
						
							| 137 | 7 135 136 | sylanbrc |  |-  ( ( ( A e. AA /\ A =/= 0 ) /\ ( f e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( f ` A ) = 0 ) ) -> ( 1 / A ) e. AA ) | 
						
							| 138 | 3 137 | rexlimddv |  |-  ( ( A e. AA /\ A =/= 0 ) -> ( 1 / A ) e. AA ) |