Metamath Proof Explorer


Theorem ab0ALT

Description: Alternate proof of ab0 , shorter but using more axioms. (Contributed by BJ, 19-Mar-2021) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion ab0ALT
|- ( { x | ph } = (/) <-> A. x -. ph )

Proof

Step Hyp Ref Expression
1 nfab1
 |-  F/_ x { x | ph }
2 1 eq0f
 |-  ( { x | ph } = (/) <-> A. x -. x e. { x | ph } )
3 abid
 |-  ( x e. { x | ph } <-> ph )
4 3 notbii
 |-  ( -. x e. { x | ph } <-> -. ph )
5 4 albii
 |-  ( A. x -. x e. { x | ph } <-> A. x -. ph )
6 2 5 bitri
 |-  ( { x | ph } = (/) <-> A. x -. ph )