| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nfv |
|- F/ y ph |
| 2 |
|
nf3 |
|- ( F/ y ph <-> ( A. y ph \/ A. y -. ph ) ) |
| 3 |
1 2
|
mpbi |
|- ( A. y ph \/ A. y -. ph ) |
| 4 |
|
tbtru |
|- ( ph <-> ( ph <-> T. ) ) |
| 5 |
|
df-clab |
|- ( y e. { x | ph } <-> [ y / x ] ph ) |
| 6 |
|
sbv |
|- ( [ y / x ] ph <-> ph ) |
| 7 |
5 6
|
bitr2i |
|- ( ph <-> y e. { x | ph } ) |
| 8 |
|
tru |
|- T. |
| 9 |
|
vextru |
|- y e. { x | T. } |
| 10 |
8 9
|
2th |
|- ( T. <-> y e. { x | T. } ) |
| 11 |
7 10
|
bibi12i |
|- ( ( ph <-> T. ) <-> ( y e. { x | ph } <-> y e. { x | T. } ) ) |
| 12 |
4 11
|
bitri |
|- ( ph <-> ( y e. { x | ph } <-> y e. { x | T. } ) ) |
| 13 |
12
|
albii |
|- ( A. y ph <-> A. y ( y e. { x | ph } <-> y e. { x | T. } ) ) |
| 14 |
|
dfcleq |
|- ( { x | ph } = { x | T. } <-> A. y ( y e. { x | ph } <-> y e. { x | T. } ) ) |
| 15 |
|
dfv2 |
|- _V = { x | T. } |
| 16 |
15
|
eqcomi |
|- { x | T. } = _V |
| 17 |
16
|
eqeq2i |
|- ( { x | ph } = { x | T. } <-> { x | ph } = _V ) |
| 18 |
13 14 17
|
3bitr2i |
|- ( A. y ph <-> { x | ph } = _V ) |
| 19 |
|
equid |
|- y = y |
| 20 |
19
|
nbn3 |
|- ( -. ph <-> ( ph <-> -. y = y ) ) |
| 21 |
|
df-clab |
|- ( y e. { x | -. x = x } <-> [ y / x ] -. x = x ) |
| 22 |
|
equid |
|- x = x |
| 23 |
22 19
|
2th |
|- ( x = x <-> y = y ) |
| 24 |
23
|
notbii |
|- ( -. x = x <-> -. y = y ) |
| 25 |
24
|
a1i |
|- ( x = y -> ( -. x = x <-> -. y = y ) ) |
| 26 |
25
|
sbievw |
|- ( [ y / x ] -. x = x <-> -. y = y ) |
| 27 |
21 26
|
bitr2i |
|- ( -. y = y <-> y e. { x | -. x = x } ) |
| 28 |
7 27
|
bibi12i |
|- ( ( ph <-> -. y = y ) <-> ( y e. { x | ph } <-> y e. { x | -. x = x } ) ) |
| 29 |
20 28
|
bitri |
|- ( -. ph <-> ( y e. { x | ph } <-> y e. { x | -. x = x } ) ) |
| 30 |
29
|
albii |
|- ( A. y -. ph <-> A. y ( y e. { x | ph } <-> y e. { x | -. x = x } ) ) |
| 31 |
|
dfcleq |
|- ( { x | ph } = { x | -. x = x } <-> A. y ( y e. { x | ph } <-> y e. { x | -. x = x } ) ) |
| 32 |
|
dfnul2 |
|- (/) = { x | -. x = x } |
| 33 |
32
|
eqcomi |
|- { x | -. x = x } = (/) |
| 34 |
33
|
eqeq2i |
|- ( { x | ph } = { x | -. x = x } <-> { x | ph } = (/) ) |
| 35 |
30 31 34
|
3bitr2i |
|- ( A. y -. ph <-> { x | ph } = (/) ) |
| 36 |
18 35
|
orbi12i |
|- ( ( A. y ph \/ A. y -. ph ) <-> ( { x | ph } = _V \/ { x | ph } = (/) ) ) |
| 37 |
3 36
|
mpbi |
|- ( { x | ph } = _V \/ { x | ph } = (/) ) |