Step |
Hyp |
Ref |
Expression |
1 |
|
nfv |
|- F/ y ph |
2 |
|
nf3 |
|- ( F/ y ph <-> ( A. y ph \/ A. y -. ph ) ) |
3 |
1 2
|
mpbi |
|- ( A. y ph \/ A. y -. ph ) |
4 |
|
tbtru |
|- ( ph <-> ( ph <-> T. ) ) |
5 |
|
df-clab |
|- ( y e. { x | ph } <-> [ y / x ] ph ) |
6 |
|
sbv |
|- ( [ y / x ] ph <-> ph ) |
7 |
5 6
|
bitr2i |
|- ( ph <-> y e. { x | ph } ) |
8 |
|
tru |
|- T. |
9 |
|
vextru |
|- y e. { x | T. } |
10 |
8 9
|
2th |
|- ( T. <-> y e. { x | T. } ) |
11 |
7 10
|
bibi12i |
|- ( ( ph <-> T. ) <-> ( y e. { x | ph } <-> y e. { x | T. } ) ) |
12 |
4 11
|
bitri |
|- ( ph <-> ( y e. { x | ph } <-> y e. { x | T. } ) ) |
13 |
12
|
albii |
|- ( A. y ph <-> A. y ( y e. { x | ph } <-> y e. { x | T. } ) ) |
14 |
|
dfcleq |
|- ( { x | ph } = { x | T. } <-> A. y ( y e. { x | ph } <-> y e. { x | T. } ) ) |
15 |
|
dfv2 |
|- _V = { x | T. } |
16 |
15
|
eqcomi |
|- { x | T. } = _V |
17 |
16
|
eqeq2i |
|- ( { x | ph } = { x | T. } <-> { x | ph } = _V ) |
18 |
13 14 17
|
3bitr2i |
|- ( A. y ph <-> { x | ph } = _V ) |
19 |
|
equid |
|- y = y |
20 |
19
|
nbn3 |
|- ( -. ph <-> ( ph <-> -. y = y ) ) |
21 |
|
df-clab |
|- ( y e. { x | -. x = x } <-> [ y / x ] -. x = x ) |
22 |
|
equid |
|- x = x |
23 |
22 19
|
2th |
|- ( x = x <-> y = y ) |
24 |
23
|
notbii |
|- ( -. x = x <-> -. y = y ) |
25 |
24
|
a1i |
|- ( x = y -> ( -. x = x <-> -. y = y ) ) |
26 |
25
|
sbievw |
|- ( [ y / x ] -. x = x <-> -. y = y ) |
27 |
21 26
|
bitr2i |
|- ( -. y = y <-> y e. { x | -. x = x } ) |
28 |
7 27
|
bibi12i |
|- ( ( ph <-> -. y = y ) <-> ( y e. { x | ph } <-> y e. { x | -. x = x } ) ) |
29 |
20 28
|
bitri |
|- ( -. ph <-> ( y e. { x | ph } <-> y e. { x | -. x = x } ) ) |
30 |
29
|
albii |
|- ( A. y -. ph <-> A. y ( y e. { x | ph } <-> y e. { x | -. x = x } ) ) |
31 |
|
dfcleq |
|- ( { x | ph } = { x | -. x = x } <-> A. y ( y e. { x | ph } <-> y e. { x | -. x = x } ) ) |
32 |
|
dfnul2 |
|- (/) = { x | -. x = x } |
33 |
32
|
eqcomi |
|- { x | -. x = x } = (/) |
34 |
33
|
eqeq2i |
|- ( { x | ph } = { x | -. x = x } <-> { x | ph } = (/) ) |
35 |
30 31 34
|
3bitr2i |
|- ( A. y -. ph <-> { x | ph } = (/) ) |
36 |
18 35
|
orbi12i |
|- ( ( A. y ph \/ A. y -. ph ) <-> ( { x | ph } = _V \/ { x | ph } = (/) ) ) |
37 |
3 36
|
mpbi |
|- ( { x | ph } = _V \/ { x | ph } = (/) ) |