Metamath Proof Explorer


Theorem ab2rexex

Description: Existence of a class abstraction of existentially restricted sets. Variables x and y are normally free-variable parameters in the class expression substituted for C , which can be thought of as C ( x , y ) . See comments for abrexex . (Contributed by NM, 20-Sep-2011)

Ref Expression
Hypotheses ab2rexex.1
|- A e. _V
ab2rexex.2
|- B e. _V
Assertion ab2rexex
|- { z | E. x e. A E. y e. B z = C } e. _V

Proof

Step Hyp Ref Expression
1 ab2rexex.1
 |-  A e. _V
2 ab2rexex.2
 |-  B e. _V
3 2 abrexex
 |-  { z | E. y e. B z = C } e. _V
4 1 3 abrexex2
 |-  { z | E. x e. A E. y e. B z = C } e. _V