Metamath Proof Explorer


Theorem ab2rexex2

Description: Existence of an existentially restricted class abstraction. ph normally has free-variable parameters x , y , and z . Compare abrexex2 . (Contributed by NM, 20-Sep-2011)

Ref Expression
Hypotheses ab2rexex2.1
|- A e. _V
ab2rexex2.2
|- B e. _V
ab2rexex2.3
|- { z | ph } e. _V
Assertion ab2rexex2
|- { z | E. x e. A E. y e. B ph } e. _V

Proof

Step Hyp Ref Expression
1 ab2rexex2.1
 |-  A e. _V
2 ab2rexex2.2
 |-  B e. _V
3 ab2rexex2.3
 |-  { z | ph } e. _V
4 2 3 abrexex2
 |-  { z | E. y e. B ph } e. _V
5 1 4 abrexex2
 |-  { z | E. x e. A E. y e. B ph } e. _V