Description: Equivalent formulas yield equal class abstractions (closed form). This is the backward implication of abbib , proved from fewer axioms, and hence is independently named. (Contributed by BJ and WL and SN, 20-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | abbi | |- ( A. x ( ph <-> ps ) -> { x | ph } = { x | ps } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spsbbi | |- ( A. x ( ph <-> ps ) -> ( [ y / x ] ph <-> [ y / x ] ps ) ) |
|
| 2 | df-clab | |- ( y e. { x | ph } <-> [ y / x ] ph ) |
|
| 3 | df-clab | |- ( y e. { x | ps } <-> [ y / x ] ps ) |
|
| 4 | 1 2 3 | 3bitr4g | |- ( A. x ( ph <-> ps ) -> ( y e. { x | ph } <-> y e. { x | ps } ) ) |
| 5 | 4 | eqrdv | |- ( A. x ( ph <-> ps ) -> { x | ph } = { x | ps } ) |