Metamath Proof Explorer


Theorem abbi1

Description: Equivalent formulas yield equal class abstractions (closed form). This is the forward implication of abbi , proved from fewer axioms. (Contributed by BJ and WL and SN, 20-Aug-2023)

Ref Expression
Assertion abbi1
|- ( A. x ( ph <-> ps ) -> { x | ph } = { x | ps } )

Proof

Step Hyp Ref Expression
1 spsbbi
 |-  ( A. x ( ph <-> ps ) -> ( [ y / x ] ph <-> [ y / x ] ps ) )
2 df-clab
 |-  ( y e. { x | ph } <-> [ y / x ] ph )
3 df-clab
 |-  ( y e. { x | ps } <-> [ y / x ] ps )
4 1 2 3 3bitr4g
 |-  ( A. x ( ph <-> ps ) -> ( y e. { x | ph } <-> y e. { x | ps } ) )
5 4 eqrdv
 |-  ( A. x ( ph <-> ps ) -> { x | ph } = { x | ps } )