Metamath Proof Explorer


Theorem abbi2i

Description: Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 26-May-1993) Avoid ax-11 . (Revised by Wolf Lammen, 6-May-2023)

Ref Expression
Hypothesis abbi2i.1
|- ( x e. A <-> ph )
Assertion abbi2i
|- A = { x | ph }

Proof

Step Hyp Ref Expression
1 abbi2i.1
 |-  ( x e. A <-> ph )
2 1 a1i
 |-  ( T. -> ( x e. A <-> ph ) )
3 2 abbi2dv
 |-  ( T. -> A = { x | ph } )
4 3 mptru
 |-  A = { x | ph }