Metamath Proof Explorer


Theorem abbiOLD

Description: Obsolete proof of abbi as of 7-Jan-2024. (Contributed by NM, 25-Nov-2013) (Revised by Mario Carneiro, 11-Aug-2016) (Proof shortened by Wolf Lammen, 16-Nov-2019) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion abbiOLD
|- ( A. x ( ph <-> ps ) <-> { x | ph } = { x | ps } )

Proof

Step Hyp Ref Expression
1 hbab1
 |-  ( y e. { x | ph } -> A. x y e. { x | ph } )
2 hbab1
 |-  ( y e. { x | ps } -> A. x y e. { x | ps } )
3 1 2 cleqh
 |-  ( { x | ph } = { x | ps } <-> A. x ( x e. { x | ph } <-> x e. { x | ps } ) )
4 abid
 |-  ( x e. { x | ph } <-> ph )
5 abid
 |-  ( x e. { x | ps } <-> ps )
6 4 5 bibi12i
 |-  ( ( x e. { x | ph } <-> x e. { x | ps } ) <-> ( ph <-> ps ) )
7 6 albii
 |-  ( A. x ( x e. { x | ph } <-> x e. { x | ps } ) <-> A. x ( ph <-> ps ) )
8 3 7 bitr2i
 |-  ( A. x ( ph <-> ps ) <-> { x | ph } = { x | ps } )