| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfcleq |
|- ( { x | ph } = { x | ps } <-> A. y ( y e. { x | ph } <-> y e. { x | ps } ) ) |
| 2 |
|
nfsab1 |
|- F/ x y e. { x | ph } |
| 3 |
|
nfsab1 |
|- F/ x y e. { x | ps } |
| 4 |
2 3
|
nfbi |
|- F/ x ( y e. { x | ph } <-> y e. { x | ps } ) |
| 5 |
|
nfv |
|- F/ y ( ph <-> ps ) |
| 6 |
|
df-clab |
|- ( y e. { x | ph } <-> [ y / x ] ph ) |
| 7 |
|
sbequ12r |
|- ( y = x -> ( [ y / x ] ph <-> ph ) ) |
| 8 |
6 7
|
bitrid |
|- ( y = x -> ( y e. { x | ph } <-> ph ) ) |
| 9 |
|
df-clab |
|- ( y e. { x | ps } <-> [ y / x ] ps ) |
| 10 |
|
sbequ12r |
|- ( y = x -> ( [ y / x ] ps <-> ps ) ) |
| 11 |
9 10
|
bitrid |
|- ( y = x -> ( y e. { x | ps } <-> ps ) ) |
| 12 |
8 11
|
bibi12d |
|- ( y = x -> ( ( y e. { x | ph } <-> y e. { x | ps } ) <-> ( ph <-> ps ) ) ) |
| 13 |
4 5 12
|
cbvalv1 |
|- ( A. y ( y e. { x | ph } <-> y e. { x | ps } ) <-> A. x ( ph <-> ps ) ) |
| 14 |
1 13
|
bitri |
|- ( { x | ph } = { x | ps } <-> A. x ( ph <-> ps ) ) |