Metamath Proof Explorer


Theorem abcdtb

Description: Given (((a and b) and c) and d), there exists a proof for b. (Contributed by Jarvin Udandy, 3-Sep-2016)

Ref Expression
Hypothesis abcdtb.1
|- ( ( ( ph /\ ps ) /\ ch ) /\ th )
Assertion abcdtb
|- ps

Proof

Step Hyp Ref Expression
1 abcdtb.1
 |-  ( ( ( ph /\ ps ) /\ ch ) /\ th )
2 1 simpli
 |-  ( ( ph /\ ps ) /\ ch )
3 2 simpli
 |-  ( ph /\ ps )
4 3 simpri
 |-  ps