Step |
Hyp |
Ref |
Expression |
1 |
|
abelth.1 |
|- ( ph -> A : NN0 --> CC ) |
2 |
|
abelth.2 |
|- ( ph -> seq 0 ( + , A ) e. dom ~~> ) |
3 |
|
abs1 |
|- ( abs ` 1 ) = 1 |
4 |
|
eqid |
|- ( z e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( z ^ n ) ) ) ) = ( z e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( z ^ n ) ) ) ) |
5 |
|
eqid |
|- sup ( { r e. RR | seq 0 ( + , ( ( z e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( z ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) = sup ( { r e. RR | seq 0 ( + , ( ( z e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( z ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) |
6 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
7 |
1
|
feqmptd |
|- ( ph -> A = ( n e. NN0 |-> ( A ` n ) ) ) |
8 |
1
|
ffvelrnda |
|- ( ( ph /\ n e. NN0 ) -> ( A ` n ) e. CC ) |
9 |
8
|
mulid1d |
|- ( ( ph /\ n e. NN0 ) -> ( ( A ` n ) x. 1 ) = ( A ` n ) ) |
10 |
9
|
mpteq2dva |
|- ( ph -> ( n e. NN0 |-> ( ( A ` n ) x. 1 ) ) = ( n e. NN0 |-> ( A ` n ) ) ) |
11 |
7 10
|
eqtr4d |
|- ( ph -> A = ( n e. NN0 |-> ( ( A ` n ) x. 1 ) ) ) |
12 |
|
ax-1cn |
|- 1 e. CC |
13 |
|
oveq1 |
|- ( z = 1 -> ( z ^ n ) = ( 1 ^ n ) ) |
14 |
|
nn0z |
|- ( n e. NN0 -> n e. ZZ ) |
15 |
|
1exp |
|- ( n e. ZZ -> ( 1 ^ n ) = 1 ) |
16 |
14 15
|
syl |
|- ( n e. NN0 -> ( 1 ^ n ) = 1 ) |
17 |
13 16
|
sylan9eq |
|- ( ( z = 1 /\ n e. NN0 ) -> ( z ^ n ) = 1 ) |
18 |
17
|
oveq2d |
|- ( ( z = 1 /\ n e. NN0 ) -> ( ( A ` n ) x. ( z ^ n ) ) = ( ( A ` n ) x. 1 ) ) |
19 |
18
|
mpteq2dva |
|- ( z = 1 -> ( n e. NN0 |-> ( ( A ` n ) x. ( z ^ n ) ) ) = ( n e. NN0 |-> ( ( A ` n ) x. 1 ) ) ) |
20 |
|
nn0ex |
|- NN0 e. _V |
21 |
20
|
mptex |
|- ( n e. NN0 |-> ( ( A ` n ) x. 1 ) ) e. _V |
22 |
19 4 21
|
fvmpt |
|- ( 1 e. CC -> ( ( z e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( z ^ n ) ) ) ) ` 1 ) = ( n e. NN0 |-> ( ( A ` n ) x. 1 ) ) ) |
23 |
12 22
|
ax-mp |
|- ( ( z e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( z ^ n ) ) ) ) ` 1 ) = ( n e. NN0 |-> ( ( A ` n ) x. 1 ) ) |
24 |
11 23
|
eqtr4di |
|- ( ph -> A = ( ( z e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( z ^ n ) ) ) ) ` 1 ) ) |
25 |
24
|
seqeq3d |
|- ( ph -> seq 0 ( + , A ) = seq 0 ( + , ( ( z e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( z ^ n ) ) ) ) ` 1 ) ) ) |
26 |
25 2
|
eqeltrrd |
|- ( ph -> seq 0 ( + , ( ( z e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( z ^ n ) ) ) ) ` 1 ) ) e. dom ~~> ) |
27 |
4 1 5 6 26
|
radcnvle |
|- ( ph -> ( abs ` 1 ) <_ sup ( { r e. RR | seq 0 ( + , ( ( z e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( z ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) |
28 |
3 27
|
eqbrtrrid |
|- ( ph -> 1 <_ sup ( { r e. RR | seq 0 ( + , ( ( z e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( z ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) |