Step |
Hyp |
Ref |
Expression |
1 |
|
abelth.1 |
|- ( ph -> A : NN0 --> CC ) |
2 |
|
abelth.2 |
|- ( ph -> seq 0 ( + , A ) e. dom ~~> ) |
3 |
|
abelth.3 |
|- ( ph -> M e. RR ) |
4 |
|
abelth.4 |
|- ( ph -> 0 <_ M ) |
5 |
|
abelth.5 |
|- S = { z e. CC | ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) } |
6 |
1 2 3 4 5
|
abelthlem2 |
|- ( ph -> ( 1 e. S /\ ( S \ { 1 } ) C_ ( 0 ( ball ` ( abs o. - ) ) 1 ) ) ) |
7 |
6
|
simprd |
|- ( ph -> ( S \ { 1 } ) C_ ( 0 ( ball ` ( abs o. - ) ) 1 ) ) |
8 |
|
ssundif |
|- ( S C_ ( { 1 } u. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) <-> ( S \ { 1 } ) C_ ( 0 ( ball ` ( abs o. - ) ) 1 ) ) |
9 |
7 8
|
sylibr |
|- ( ph -> S C_ ( { 1 } u. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) ) |
10 |
9
|
sselda |
|- ( ( ph /\ X e. S ) -> X e. ( { 1 } u. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) ) |
11 |
|
elun |
|- ( X e. ( { 1 } u. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) <-> ( X e. { 1 } \/ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) ) |
12 |
10 11
|
sylib |
|- ( ( ph /\ X e. S ) -> ( X e. { 1 } \/ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) ) |
13 |
1
|
feqmptd |
|- ( ph -> A = ( n e. NN0 |-> ( A ` n ) ) ) |
14 |
1
|
ffvelrnda |
|- ( ( ph /\ n e. NN0 ) -> ( A ` n ) e. CC ) |
15 |
14
|
mulid1d |
|- ( ( ph /\ n e. NN0 ) -> ( ( A ` n ) x. 1 ) = ( A ` n ) ) |
16 |
15
|
mpteq2dva |
|- ( ph -> ( n e. NN0 |-> ( ( A ` n ) x. 1 ) ) = ( n e. NN0 |-> ( A ` n ) ) ) |
17 |
13 16
|
eqtr4d |
|- ( ph -> A = ( n e. NN0 |-> ( ( A ` n ) x. 1 ) ) ) |
18 |
|
elsni |
|- ( X e. { 1 } -> X = 1 ) |
19 |
18
|
oveq1d |
|- ( X e. { 1 } -> ( X ^ n ) = ( 1 ^ n ) ) |
20 |
|
nn0z |
|- ( n e. NN0 -> n e. ZZ ) |
21 |
|
1exp |
|- ( n e. ZZ -> ( 1 ^ n ) = 1 ) |
22 |
20 21
|
syl |
|- ( n e. NN0 -> ( 1 ^ n ) = 1 ) |
23 |
19 22
|
sylan9eq |
|- ( ( X e. { 1 } /\ n e. NN0 ) -> ( X ^ n ) = 1 ) |
24 |
23
|
oveq2d |
|- ( ( X e. { 1 } /\ n e. NN0 ) -> ( ( A ` n ) x. ( X ^ n ) ) = ( ( A ` n ) x. 1 ) ) |
25 |
24
|
mpteq2dva |
|- ( X e. { 1 } -> ( n e. NN0 |-> ( ( A ` n ) x. ( X ^ n ) ) ) = ( n e. NN0 |-> ( ( A ` n ) x. 1 ) ) ) |
26 |
25
|
eqcomd |
|- ( X e. { 1 } -> ( n e. NN0 |-> ( ( A ` n ) x. 1 ) ) = ( n e. NN0 |-> ( ( A ` n ) x. ( X ^ n ) ) ) ) |
27 |
17 26
|
sylan9eq |
|- ( ( ph /\ X e. { 1 } ) -> A = ( n e. NN0 |-> ( ( A ` n ) x. ( X ^ n ) ) ) ) |
28 |
27
|
seqeq3d |
|- ( ( ph /\ X e. { 1 } ) -> seq 0 ( + , A ) = seq 0 ( + , ( n e. NN0 |-> ( ( A ` n ) x. ( X ^ n ) ) ) ) ) |
29 |
2
|
adantr |
|- ( ( ph /\ X e. { 1 } ) -> seq 0 ( + , A ) e. dom ~~> ) |
30 |
28 29
|
eqeltrrd |
|- ( ( ph /\ X e. { 1 } ) -> seq 0 ( + , ( n e. NN0 |-> ( ( A ` n ) x. ( X ^ n ) ) ) ) e. dom ~~> ) |
31 |
|
cnxmet |
|- ( abs o. - ) e. ( *Met ` CC ) |
32 |
|
0cn |
|- 0 e. CC |
33 |
|
1xr |
|- 1 e. RR* |
34 |
|
blssm |
|- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ 0 e. CC /\ 1 e. RR* ) -> ( 0 ( ball ` ( abs o. - ) ) 1 ) C_ CC ) |
35 |
31 32 33 34
|
mp3an |
|- ( 0 ( ball ` ( abs o. - ) ) 1 ) C_ CC |
36 |
|
simpr |
|- ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) -> X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) |
37 |
35 36
|
sselid |
|- ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) -> X e. CC ) |
38 |
|
oveq1 |
|- ( z = X -> ( z ^ n ) = ( X ^ n ) ) |
39 |
38
|
oveq2d |
|- ( z = X -> ( ( A ` n ) x. ( z ^ n ) ) = ( ( A ` n ) x. ( X ^ n ) ) ) |
40 |
39
|
mpteq2dv |
|- ( z = X -> ( n e. NN0 |-> ( ( A ` n ) x. ( z ^ n ) ) ) = ( n e. NN0 |-> ( ( A ` n ) x. ( X ^ n ) ) ) ) |
41 |
|
eqid |
|- ( z e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( z ^ n ) ) ) ) = ( z e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( z ^ n ) ) ) ) |
42 |
|
nn0ex |
|- NN0 e. _V |
43 |
42
|
mptex |
|- ( n e. NN0 |-> ( ( A ` n ) x. ( X ^ n ) ) ) e. _V |
44 |
40 41 43
|
fvmpt |
|- ( X e. CC -> ( ( z e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( z ^ n ) ) ) ) ` X ) = ( n e. NN0 |-> ( ( A ` n ) x. ( X ^ n ) ) ) ) |
45 |
37 44
|
syl |
|- ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) -> ( ( z e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( z ^ n ) ) ) ) ` X ) = ( n e. NN0 |-> ( ( A ` n ) x. ( X ^ n ) ) ) ) |
46 |
45
|
seqeq3d |
|- ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) -> seq 0 ( + , ( ( z e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( z ^ n ) ) ) ) ` X ) ) = seq 0 ( + , ( n e. NN0 |-> ( ( A ` n ) x. ( X ^ n ) ) ) ) ) |
47 |
1
|
adantr |
|- ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) -> A : NN0 --> CC ) |
48 |
|
eqid |
|- sup ( { r e. RR | seq 0 ( + , ( ( z e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( z ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) = sup ( { r e. RR | seq 0 ( + , ( ( z e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( z ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) |
49 |
37
|
abscld |
|- ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) -> ( abs ` X ) e. RR ) |
50 |
49
|
rexrd |
|- ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) -> ( abs ` X ) e. RR* ) |
51 |
|
1re |
|- 1 e. RR |
52 |
|
rexr |
|- ( 1 e. RR -> 1 e. RR* ) |
53 |
51 52
|
mp1i |
|- ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) -> 1 e. RR* ) |
54 |
|
iccssxr |
|- ( 0 [,] +oo ) C_ RR* |
55 |
41 47 48
|
radcnvcl |
|- ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) -> sup ( { r e. RR | seq 0 ( + , ( ( z e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( z ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) e. ( 0 [,] +oo ) ) |
56 |
54 55
|
sselid |
|- ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) -> sup ( { r e. RR | seq 0 ( + , ( ( z e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( z ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) e. RR* ) |
57 |
|
eqid |
|- ( abs o. - ) = ( abs o. - ) |
58 |
57
|
cnmetdval |
|- ( ( X e. CC /\ 0 e. CC ) -> ( X ( abs o. - ) 0 ) = ( abs ` ( X - 0 ) ) ) |
59 |
37 32 58
|
sylancl |
|- ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) -> ( X ( abs o. - ) 0 ) = ( abs ` ( X - 0 ) ) ) |
60 |
37
|
subid1d |
|- ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) -> ( X - 0 ) = X ) |
61 |
60
|
fveq2d |
|- ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) -> ( abs ` ( X - 0 ) ) = ( abs ` X ) ) |
62 |
59 61
|
eqtrd |
|- ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) -> ( X ( abs o. - ) 0 ) = ( abs ` X ) ) |
63 |
|
elbl3 |
|- ( ( ( ( abs o. - ) e. ( *Met ` CC ) /\ 1 e. RR* ) /\ ( 0 e. CC /\ X e. CC ) ) -> ( X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) <-> ( X ( abs o. - ) 0 ) < 1 ) ) |
64 |
31 33 63
|
mpanl12 |
|- ( ( 0 e. CC /\ X e. CC ) -> ( X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) <-> ( X ( abs o. - ) 0 ) < 1 ) ) |
65 |
32 37 64
|
sylancr |
|- ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) -> ( X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) <-> ( X ( abs o. - ) 0 ) < 1 ) ) |
66 |
36 65
|
mpbid |
|- ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) -> ( X ( abs o. - ) 0 ) < 1 ) |
67 |
62 66
|
eqbrtrrd |
|- ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) -> ( abs ` X ) < 1 ) |
68 |
1 2
|
abelthlem1 |
|- ( ph -> 1 <_ sup ( { r e. RR | seq 0 ( + , ( ( z e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( z ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) |
69 |
68
|
adantr |
|- ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) -> 1 <_ sup ( { r e. RR | seq 0 ( + , ( ( z e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( z ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) |
70 |
50 53 56 67 69
|
xrltletrd |
|- ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) -> ( abs ` X ) < sup ( { r e. RR | seq 0 ( + , ( ( z e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( z ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) |
71 |
41 47 48 37 70
|
radcnvlt2 |
|- ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) -> seq 0 ( + , ( ( z e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( z ^ n ) ) ) ) ` X ) ) e. dom ~~> ) |
72 |
46 71
|
eqeltrrd |
|- ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) -> seq 0 ( + , ( n e. NN0 |-> ( ( A ` n ) x. ( X ^ n ) ) ) ) e. dom ~~> ) |
73 |
30 72
|
jaodan |
|- ( ( ph /\ ( X e. { 1 } \/ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) ) -> seq 0 ( + , ( n e. NN0 |-> ( ( A ` n ) x. ( X ^ n ) ) ) ) e. dom ~~> ) |
74 |
12 73
|
syldan |
|- ( ( ph /\ X e. S ) -> seq 0 ( + , ( n e. NN0 |-> ( ( A ` n ) x. ( X ^ n ) ) ) ) e. dom ~~> ) |