| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							abelth.1 | 
							 |-  ( ph -> A : NN0 --> CC )  | 
						
						
							| 2 | 
							
								
							 | 
							abelth.2 | 
							 |-  ( ph -> seq 0 ( + , A ) e. dom ~~> )  | 
						
						
							| 3 | 
							
								
							 | 
							abelth.3 | 
							 |-  ( ph -> M e. RR )  | 
						
						
							| 4 | 
							
								
							 | 
							abelth.4 | 
							 |-  ( ph -> 0 <_ M )  | 
						
						
							| 5 | 
							
								
							 | 
							abelth.5 | 
							 |-  S = { z e. CC | ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) } | 
						
						
							| 6 | 
							
								1 2 3 4 5
							 | 
							abelthlem2 | 
							 |-  ( ph -> ( 1 e. S /\ ( S \ { 1 } ) C_ ( 0 ( ball ` ( abs o. - ) ) 1 ) ) ) | 
						
						
							| 7 | 
							
								6
							 | 
							simprd | 
							 |-  ( ph -> ( S \ { 1 } ) C_ ( 0 ( ball ` ( abs o. - ) ) 1 ) ) | 
						
						
							| 8 | 
							
								
							 | 
							ssundif | 
							 |-  ( S C_ ( { 1 } u. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) <-> ( S \ { 1 } ) C_ ( 0 ( ball ` ( abs o. - ) ) 1 ) ) | 
						
						
							| 9 | 
							
								7 8
							 | 
							sylibr | 
							 |-  ( ph -> S C_ ( { 1 } u. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) ) | 
						
						
							| 10 | 
							
								9
							 | 
							sselda | 
							 |-  ( ( ph /\ X e. S ) -> X e. ( { 1 } u. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) ) | 
						
						
							| 11 | 
							
								
							 | 
							elun | 
							 |-  ( X e. ( { 1 } u. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) <-> ( X e. { 1 } \/ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) ) | 
						
						
							| 12 | 
							
								10 11
							 | 
							sylib | 
							 |-  ( ( ph /\ X e. S ) -> ( X e. { 1 } \/ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) ) | 
						
						
							| 13 | 
							
								1
							 | 
							feqmptd | 
							 |-  ( ph -> A = ( n e. NN0 |-> ( A ` n ) ) )  | 
						
						
							| 14 | 
							
								1
							 | 
							ffvelcdmda | 
							 |-  ( ( ph /\ n e. NN0 ) -> ( A ` n ) e. CC )  | 
						
						
							| 15 | 
							
								14
							 | 
							mulridd | 
							 |-  ( ( ph /\ n e. NN0 ) -> ( ( A ` n ) x. 1 ) = ( A ` n ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							mpteq2dva | 
							 |-  ( ph -> ( n e. NN0 |-> ( ( A ` n ) x. 1 ) ) = ( n e. NN0 |-> ( A ` n ) ) )  | 
						
						
							| 17 | 
							
								13 16
							 | 
							eqtr4d | 
							 |-  ( ph -> A = ( n e. NN0 |-> ( ( A ` n ) x. 1 ) ) )  | 
						
						
							| 18 | 
							
								
							 | 
							elsni | 
							 |-  ( X e. { 1 } -> X = 1 ) | 
						
						
							| 19 | 
							
								18
							 | 
							oveq1d | 
							 |-  ( X e. { 1 } -> ( X ^ n ) = ( 1 ^ n ) ) | 
						
						
							| 20 | 
							
								
							 | 
							nn0z | 
							 |-  ( n e. NN0 -> n e. ZZ )  | 
						
						
							| 21 | 
							
								
							 | 
							1exp | 
							 |-  ( n e. ZZ -> ( 1 ^ n ) = 1 )  | 
						
						
							| 22 | 
							
								20 21
							 | 
							syl | 
							 |-  ( n e. NN0 -> ( 1 ^ n ) = 1 )  | 
						
						
							| 23 | 
							
								19 22
							 | 
							sylan9eq | 
							 |-  ( ( X e. { 1 } /\ n e. NN0 ) -> ( X ^ n ) = 1 ) | 
						
						
							| 24 | 
							
								23
							 | 
							oveq2d | 
							 |-  ( ( X e. { 1 } /\ n e. NN0 ) -> ( ( A ` n ) x. ( X ^ n ) ) = ( ( A ` n ) x. 1 ) ) | 
						
						
							| 25 | 
							
								24
							 | 
							mpteq2dva | 
							 |-  ( X e. { 1 } -> ( n e. NN0 |-> ( ( A ` n ) x. ( X ^ n ) ) ) = ( n e. NN0 |-> ( ( A ` n ) x. 1 ) ) ) | 
						
						
							| 26 | 
							
								25
							 | 
							eqcomd | 
							 |-  ( X e. { 1 } -> ( n e. NN0 |-> ( ( A ` n ) x. 1 ) ) = ( n e. NN0 |-> ( ( A ` n ) x. ( X ^ n ) ) ) ) | 
						
						
							| 27 | 
							
								17 26
							 | 
							sylan9eq | 
							 |-  ( ( ph /\ X e. { 1 } ) -> A = ( n e. NN0 |-> ( ( A ` n ) x. ( X ^ n ) ) ) ) | 
						
						
							| 28 | 
							
								27
							 | 
							seqeq3d | 
							 |-  ( ( ph /\ X e. { 1 } ) -> seq 0 ( + , A ) = seq 0 ( + , ( n e. NN0 |-> ( ( A ` n ) x. ( X ^ n ) ) ) ) ) | 
						
						
							| 29 | 
							
								2
							 | 
							adantr | 
							 |-  ( ( ph /\ X e. { 1 } ) -> seq 0 ( + , A ) e. dom ~~> ) | 
						
						
							| 30 | 
							
								28 29
							 | 
							eqeltrrd | 
							 |-  ( ( ph /\ X e. { 1 } ) -> seq 0 ( + , ( n e. NN0 |-> ( ( A ` n ) x. ( X ^ n ) ) ) ) e. dom ~~> ) | 
						
						
							| 31 | 
							
								
							 | 
							cnxmet | 
							 |-  ( abs o. - ) e. ( *Met ` CC )  | 
						
						
							| 32 | 
							
								
							 | 
							0cn | 
							 |-  0 e. CC  | 
						
						
							| 33 | 
							
								
							 | 
							1xr | 
							 |-  1 e. RR*  | 
						
						
							| 34 | 
							
								
							 | 
							blssm | 
							 |-  ( ( ( abs o. - ) e. ( *Met ` CC ) /\ 0 e. CC /\ 1 e. RR* ) -> ( 0 ( ball ` ( abs o. - ) ) 1 ) C_ CC )  | 
						
						
							| 35 | 
							
								31 32 33 34
							 | 
							mp3an | 
							 |-  ( 0 ( ball ` ( abs o. - ) ) 1 ) C_ CC  | 
						
						
							| 36 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) -> X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) )  | 
						
						
							| 37 | 
							
								35 36
							 | 
							sselid | 
							 |-  ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) -> X e. CC )  | 
						
						
							| 38 | 
							
								
							 | 
							oveq1 | 
							 |-  ( z = X -> ( z ^ n ) = ( X ^ n ) )  | 
						
						
							| 39 | 
							
								38
							 | 
							oveq2d | 
							 |-  ( z = X -> ( ( A ` n ) x. ( z ^ n ) ) = ( ( A ` n ) x. ( X ^ n ) ) )  | 
						
						
							| 40 | 
							
								39
							 | 
							mpteq2dv | 
							 |-  ( z = X -> ( n e. NN0 |-> ( ( A ` n ) x. ( z ^ n ) ) ) = ( n e. NN0 |-> ( ( A ` n ) x. ( X ^ n ) ) ) )  | 
						
						
							| 41 | 
							
								
							 | 
							eqid | 
							 |-  ( z e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( z ^ n ) ) ) ) = ( z e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( z ^ n ) ) ) )  | 
						
						
							| 42 | 
							
								
							 | 
							nn0ex | 
							 |-  NN0 e. _V  | 
						
						
							| 43 | 
							
								42
							 | 
							mptex | 
							 |-  ( n e. NN0 |-> ( ( A ` n ) x. ( X ^ n ) ) ) e. _V  | 
						
						
							| 44 | 
							
								40 41 43
							 | 
							fvmpt | 
							 |-  ( X e. CC -> ( ( z e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( z ^ n ) ) ) ) ` X ) = ( n e. NN0 |-> ( ( A ` n ) x. ( X ^ n ) ) ) )  | 
						
						
							| 45 | 
							
								37 44
							 | 
							syl | 
							 |-  ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) -> ( ( z e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( z ^ n ) ) ) ) ` X ) = ( n e. NN0 |-> ( ( A ` n ) x. ( X ^ n ) ) ) )  | 
						
						
							| 46 | 
							
								45
							 | 
							seqeq3d | 
							 |-  ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) -> seq 0 ( + , ( ( z e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( z ^ n ) ) ) ) ` X ) ) = seq 0 ( + , ( n e. NN0 |-> ( ( A ` n ) x. ( X ^ n ) ) ) ) )  | 
						
						
							| 47 | 
							
								1
							 | 
							adantr | 
							 |-  ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) -> A : NN0 --> CC )  | 
						
						
							| 48 | 
							
								
							 | 
							eqid | 
							 |-  sup ( { r e. RR | seq 0 ( + , ( ( z e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( z ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) = sup ( { r e. RR | seq 0 ( + , ( ( z e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( z ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) | 
						
						
							| 49 | 
							
								37
							 | 
							abscld | 
							 |-  ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) -> ( abs ` X ) e. RR )  | 
						
						
							| 50 | 
							
								49
							 | 
							rexrd | 
							 |-  ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) -> ( abs ` X ) e. RR* )  | 
						
						
							| 51 | 
							
								
							 | 
							1re | 
							 |-  1 e. RR  | 
						
						
							| 52 | 
							
								
							 | 
							rexr | 
							 |-  ( 1 e. RR -> 1 e. RR* )  | 
						
						
							| 53 | 
							
								51 52
							 | 
							mp1i | 
							 |-  ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) -> 1 e. RR* )  | 
						
						
							| 54 | 
							
								
							 | 
							iccssxr | 
							 |-  ( 0 [,] +oo ) C_ RR*  | 
						
						
							| 55 | 
							
								41 47 48
							 | 
							radcnvcl | 
							 |-  ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) -> sup ( { r e. RR | seq 0 ( + , ( ( z e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( z ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) e. ( 0 [,] +oo ) ) | 
						
						
							| 56 | 
							
								54 55
							 | 
							sselid | 
							 |-  ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) -> sup ( { r e. RR | seq 0 ( + , ( ( z e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( z ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) e. RR* ) | 
						
						
							| 57 | 
							
								
							 | 
							eqid | 
							 |-  ( abs o. - ) = ( abs o. - )  | 
						
						
							| 58 | 
							
								57
							 | 
							cnmetdval | 
							 |-  ( ( X e. CC /\ 0 e. CC ) -> ( X ( abs o. - ) 0 ) = ( abs ` ( X - 0 ) ) )  | 
						
						
							| 59 | 
							
								37 32 58
							 | 
							sylancl | 
							 |-  ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) -> ( X ( abs o. - ) 0 ) = ( abs ` ( X - 0 ) ) )  | 
						
						
							| 60 | 
							
								37
							 | 
							subid1d | 
							 |-  ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) -> ( X - 0 ) = X )  | 
						
						
							| 61 | 
							
								60
							 | 
							fveq2d | 
							 |-  ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) -> ( abs ` ( X - 0 ) ) = ( abs ` X ) )  | 
						
						
							| 62 | 
							
								59 61
							 | 
							eqtrd | 
							 |-  ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) -> ( X ( abs o. - ) 0 ) = ( abs ` X ) )  | 
						
						
							| 63 | 
							
								
							 | 
							elbl3 | 
							 |-  ( ( ( ( abs o. - ) e. ( *Met ` CC ) /\ 1 e. RR* ) /\ ( 0 e. CC /\ X e. CC ) ) -> ( X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) <-> ( X ( abs o. - ) 0 ) < 1 ) )  | 
						
						
							| 64 | 
							
								31 33 63
							 | 
							mpanl12 | 
							 |-  ( ( 0 e. CC /\ X e. CC ) -> ( X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) <-> ( X ( abs o. - ) 0 ) < 1 ) )  | 
						
						
							| 65 | 
							
								32 37 64
							 | 
							sylancr | 
							 |-  ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) -> ( X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) <-> ( X ( abs o. - ) 0 ) < 1 ) )  | 
						
						
							| 66 | 
							
								36 65
							 | 
							mpbid | 
							 |-  ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) -> ( X ( abs o. - ) 0 ) < 1 )  | 
						
						
							| 67 | 
							
								62 66
							 | 
							eqbrtrrd | 
							 |-  ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) -> ( abs ` X ) < 1 )  | 
						
						
							| 68 | 
							
								1 2
							 | 
							abelthlem1 | 
							 |-  ( ph -> 1 <_ sup ( { r e. RR | seq 0 ( + , ( ( z e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( z ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) | 
						
						
							| 69 | 
							
								68
							 | 
							adantr | 
							 |-  ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) -> 1 <_ sup ( { r e. RR | seq 0 ( + , ( ( z e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( z ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) | 
						
						
							| 70 | 
							
								50 53 56 67 69
							 | 
							xrltletrd | 
							 |-  ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) -> ( abs ` X ) < sup ( { r e. RR | seq 0 ( + , ( ( z e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( z ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) | 
						
						
							| 71 | 
							
								41 47 48 37 70
							 | 
							radcnvlt2 | 
							 |-  ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) -> seq 0 ( + , ( ( z e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( z ^ n ) ) ) ) ` X ) ) e. dom ~~> )  | 
						
						
							| 72 | 
							
								46 71
							 | 
							eqeltrrd | 
							 |-  ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) -> seq 0 ( + , ( n e. NN0 |-> ( ( A ` n ) x. ( X ^ n ) ) ) ) e. dom ~~> )  | 
						
						
							| 73 | 
							
								30 72
							 | 
							jaodan | 
							 |-  ( ( ph /\ ( X e. { 1 } \/ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) ) -> seq 0 ( + , ( n e. NN0 |-> ( ( A ` n ) x. ( X ^ n ) ) ) ) e. dom ~~> ) | 
						
						
							| 74 | 
							
								12 73
							 | 
							syldan | 
							 |-  ( ( ph /\ X e. S ) -> seq 0 ( + , ( n e. NN0 |-> ( ( A ` n ) x. ( X ^ n ) ) ) ) e. dom ~~> )  |