| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							abelth.1 | 
							 |-  ( ph -> A : NN0 --> CC )  | 
						
						
							| 2 | 
							
								
							 | 
							abelth.2 | 
							 |-  ( ph -> seq 0 ( + , A ) e. dom ~~> )  | 
						
						
							| 3 | 
							
								
							 | 
							abelth.3 | 
							 |-  ( ph -> M e. RR )  | 
						
						
							| 4 | 
							
								
							 | 
							abelth.4 | 
							 |-  ( ph -> 0 <_ M )  | 
						
						
							| 5 | 
							
								
							 | 
							abelth.5 | 
							 |-  S = { z e. CC | ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) } | 
						
						
							| 6 | 
							
								
							 | 
							abelth.6 | 
							 |-  F = ( x e. S |-> sum_ n e. NN0 ( ( A ` n ) x. ( x ^ n ) ) )  | 
						
						
							| 7 | 
							
								
							 | 
							abelth.7 | 
							 |-  ( ph -> seq 0 ( + , A ) ~~> 0 )  | 
						
						
							| 8 | 
							
								
							 | 
							nn0uz | 
							 |-  NN0 = ( ZZ>= ` 0 )  | 
						
						
							| 9 | 
							
								
							 | 
							0zd | 
							 |-  ( ph -> 0 e. ZZ )  | 
						
						
							| 10 | 
							
								
							 | 
							1rp | 
							 |-  1 e. RR+  | 
						
						
							| 11 | 
							
								10
							 | 
							a1i | 
							 |-  ( ph -> 1 e. RR+ )  | 
						
						
							| 12 | 
							
								
							 | 
							eqidd | 
							 |-  ( ( ph /\ m e. NN0 ) -> ( seq 0 ( + , A ) ` m ) = ( seq 0 ( + , A ) ` m ) )  | 
						
						
							| 13 | 
							
								8 9 11 12 7
							 | 
							climi0 | 
							 |-  ( ph -> E. j e. NN0 A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 )  | 
						
						
							| 14 | 
							
								13
							 | 
							adantr | 
							 |-  ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) -> E. j e. NN0 A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 )  | 
						
						
							| 15 | 
							
								
							 | 
							simprl | 
							 |-  ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) -> j e. NN0 )  | 
						
						
							| 16 | 
							
								
							 | 
							oveq2 | 
							 |-  ( n = i -> ( ( abs ` X ) ^ n ) = ( ( abs ` X ) ^ i ) )  | 
						
						
							| 17 | 
							
								
							 | 
							eqid | 
							 |-  ( n e. NN0 |-> ( ( abs ` X ) ^ n ) ) = ( n e. NN0 |-> ( ( abs ` X ) ^ n ) )  | 
						
						
							| 18 | 
							
								
							 | 
							ovex | 
							 |-  ( ( abs ` X ) ^ i ) e. _V  | 
						
						
							| 19 | 
							
								16 17 18
							 | 
							fvmpt | 
							 |-  ( i e. NN0 -> ( ( n e. NN0 |-> ( ( abs ` X ) ^ n ) ) ` i ) = ( ( abs ` X ) ^ i ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							adantl | 
							 |-  ( ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) /\ i e. NN0 ) -> ( ( n e. NN0 |-> ( ( abs ` X ) ^ n ) ) ` i ) = ( ( abs ` X ) ^ i ) )  | 
						
						
							| 21 | 
							
								
							 | 
							cnxmet | 
							 |-  ( abs o. - ) e. ( *Met ` CC )  | 
						
						
							| 22 | 
							
								
							 | 
							0cn | 
							 |-  0 e. CC  | 
						
						
							| 23 | 
							
								
							 | 
							1xr | 
							 |-  1 e. RR*  | 
						
						
							| 24 | 
							
								
							 | 
							blssm | 
							 |-  ( ( ( abs o. - ) e. ( *Met ` CC ) /\ 0 e. CC /\ 1 e. RR* ) -> ( 0 ( ball ` ( abs o. - ) ) 1 ) C_ CC )  | 
						
						
							| 25 | 
							
								21 22 23 24
							 | 
							mp3an | 
							 |-  ( 0 ( ball ` ( abs o. - ) ) 1 ) C_ CC  | 
						
						
							| 26 | 
							
								
							 | 
							simplr | 
							 |-  ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) -> X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) )  | 
						
						
							| 27 | 
							
								25 26
							 | 
							sselid | 
							 |-  ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) -> X e. CC )  | 
						
						
							| 28 | 
							
								27
							 | 
							abscld | 
							 |-  ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) -> ( abs ` X ) e. RR )  | 
						
						
							| 29 | 
							
								
							 | 
							reexpcl | 
							 |-  ( ( ( abs ` X ) e. RR /\ i e. NN0 ) -> ( ( abs ` X ) ^ i ) e. RR )  | 
						
						
							| 30 | 
							
								28 29
							 | 
							sylan | 
							 |-  ( ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) /\ i e. NN0 ) -> ( ( abs ` X ) ^ i ) e. RR )  | 
						
						
							| 31 | 
							
								20 30
							 | 
							eqeltrd | 
							 |-  ( ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) /\ i e. NN0 ) -> ( ( n e. NN0 |-> ( ( abs ` X ) ^ n ) ) ` i ) e. RR )  | 
						
						
							| 32 | 
							
								
							 | 
							fveq2 | 
							 |-  ( k = i -> ( seq 0 ( + , A ) ` k ) = ( seq 0 ( + , A ) ` i ) )  | 
						
						
							| 33 | 
							
								
							 | 
							oveq2 | 
							 |-  ( k = i -> ( X ^ k ) = ( X ^ i ) )  | 
						
						
							| 34 | 
							
								32 33
							 | 
							oveq12d | 
							 |-  ( k = i -> ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) = ( ( seq 0 ( + , A ) ` i ) x. ( X ^ i ) ) )  | 
						
						
							| 35 | 
							
								
							 | 
							eqid | 
							 |-  ( k e. NN0 |-> ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) = ( k e. NN0 |-> ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) )  | 
						
						
							| 36 | 
							
								
							 | 
							ovex | 
							 |-  ( ( seq 0 ( + , A ) ` i ) x. ( X ^ i ) ) e. _V  | 
						
						
							| 37 | 
							
								34 35 36
							 | 
							fvmpt | 
							 |-  ( i e. NN0 -> ( ( k e. NN0 |-> ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) ` i ) = ( ( seq 0 ( + , A ) ` i ) x. ( X ^ i ) ) )  | 
						
						
							| 38 | 
							
								37
							 | 
							adantl | 
							 |-  ( ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) /\ i e. NN0 ) -> ( ( k e. NN0 |-> ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) ` i ) = ( ( seq 0 ( + , A ) ` i ) x. ( X ^ i ) ) )  | 
						
						
							| 39 | 
							
								1
							 | 
							ffvelcdmda | 
							 |-  ( ( ph /\ x e. NN0 ) -> ( A ` x ) e. CC )  | 
						
						
							| 40 | 
							
								8 9 39
							 | 
							serf | 
							 |-  ( ph -> seq 0 ( + , A ) : NN0 --> CC )  | 
						
						
							| 41 | 
							
								40
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) -> seq 0 ( + , A ) : NN0 --> CC )  | 
						
						
							| 42 | 
							
								41
							 | 
							ffvelcdmda | 
							 |-  ( ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) /\ i e. NN0 ) -> ( seq 0 ( + , A ) ` i ) e. CC )  | 
						
						
							| 43 | 
							
								
							 | 
							expcl | 
							 |-  ( ( X e. CC /\ i e. NN0 ) -> ( X ^ i ) e. CC )  | 
						
						
							| 44 | 
							
								27 43
							 | 
							sylan | 
							 |-  ( ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) /\ i e. NN0 ) -> ( X ^ i ) e. CC )  | 
						
						
							| 45 | 
							
								42 44
							 | 
							mulcld | 
							 |-  ( ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) /\ i e. NN0 ) -> ( ( seq 0 ( + , A ) ` i ) x. ( X ^ i ) ) e. CC )  | 
						
						
							| 46 | 
							
								38 45
							 | 
							eqeltrd | 
							 |-  ( ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) /\ i e. NN0 ) -> ( ( k e. NN0 |-> ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) ` i ) e. CC )  | 
						
						
							| 47 | 
							
								28
							 | 
							recnd | 
							 |-  ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) -> ( abs ` X ) e. CC )  | 
						
						
							| 48 | 
							
								
							 | 
							absidm | 
							 |-  ( X e. CC -> ( abs ` ( abs ` X ) ) = ( abs ` X ) )  | 
						
						
							| 49 | 
							
								27 48
							 | 
							syl | 
							 |-  ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) -> ( abs ` ( abs ` X ) ) = ( abs ` X ) )  | 
						
						
							| 50 | 
							
								
							 | 
							eqid | 
							 |-  ( abs o. - ) = ( abs o. - )  | 
						
						
							| 51 | 
							
								50
							 | 
							cnmetdval | 
							 |-  ( ( X e. CC /\ 0 e. CC ) -> ( X ( abs o. - ) 0 ) = ( abs ` ( X - 0 ) ) )  | 
						
						
							| 52 | 
							
								27 22 51
							 | 
							sylancl | 
							 |-  ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) -> ( X ( abs o. - ) 0 ) = ( abs ` ( X - 0 ) ) )  | 
						
						
							| 53 | 
							
								27
							 | 
							subid1d | 
							 |-  ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) -> ( X - 0 ) = X )  | 
						
						
							| 54 | 
							
								53
							 | 
							fveq2d | 
							 |-  ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) -> ( abs ` ( X - 0 ) ) = ( abs ` X ) )  | 
						
						
							| 55 | 
							
								52 54
							 | 
							eqtrd | 
							 |-  ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) -> ( X ( abs o. - ) 0 ) = ( abs ` X ) )  | 
						
						
							| 56 | 
							
								
							 | 
							elbl3 | 
							 |-  ( ( ( ( abs o. - ) e. ( *Met ` CC ) /\ 1 e. RR* ) /\ ( 0 e. CC /\ X e. CC ) ) -> ( X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) <-> ( X ( abs o. - ) 0 ) < 1 ) )  | 
						
						
							| 57 | 
							
								21 23 56
							 | 
							mpanl12 | 
							 |-  ( ( 0 e. CC /\ X e. CC ) -> ( X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) <-> ( X ( abs o. - ) 0 ) < 1 ) )  | 
						
						
							| 58 | 
							
								22 27 57
							 | 
							sylancr | 
							 |-  ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) -> ( X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) <-> ( X ( abs o. - ) 0 ) < 1 ) )  | 
						
						
							| 59 | 
							
								26 58
							 | 
							mpbid | 
							 |-  ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) -> ( X ( abs o. - ) 0 ) < 1 )  | 
						
						
							| 60 | 
							
								55 59
							 | 
							eqbrtrrd | 
							 |-  ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) -> ( abs ` X ) < 1 )  | 
						
						
							| 61 | 
							
								49 60
							 | 
							eqbrtrd | 
							 |-  ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) -> ( abs ` ( abs ` X ) ) < 1 )  | 
						
						
							| 62 | 
							
								47 61 20
							 | 
							geolim | 
							 |-  ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) -> seq 0 ( + , ( n e. NN0 |-> ( ( abs ` X ) ^ n ) ) ) ~~> ( 1 / ( 1 - ( abs ` X ) ) ) )  | 
						
						
							| 63 | 
							
								
							 | 
							climrel | 
							 |-  Rel ~~>  | 
						
						
							| 64 | 
							
								63
							 | 
							releldmi | 
							 |-  ( seq 0 ( + , ( n e. NN0 |-> ( ( abs ` X ) ^ n ) ) ) ~~> ( 1 / ( 1 - ( abs ` X ) ) ) -> seq 0 ( + , ( n e. NN0 |-> ( ( abs ` X ) ^ n ) ) ) e. dom ~~> )  | 
						
						
							| 65 | 
							
								62 64
							 | 
							syl | 
							 |-  ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) -> seq 0 ( + , ( n e. NN0 |-> ( ( abs ` X ) ^ n ) ) ) e. dom ~~> )  | 
						
						
							| 66 | 
							
								
							 | 
							1red | 
							 |-  ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) -> 1 e. RR )  | 
						
						
							| 67 | 
							
								41
							 | 
							adantr | 
							 |-  ( ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) /\ i e. ( ZZ>= ` j ) ) -> seq 0 ( + , A ) : NN0 --> CC )  | 
						
						
							| 68 | 
							
								
							 | 
							eluznn0 | 
							 |-  ( ( j e. NN0 /\ i e. ( ZZ>= ` j ) ) -> i e. NN0 )  | 
						
						
							| 69 | 
							
								15 68
							 | 
							sylan | 
							 |-  ( ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) /\ i e. ( ZZ>= ` j ) ) -> i e. NN0 )  | 
						
						
							| 70 | 
							
								67 69
							 | 
							ffvelcdmd | 
							 |-  ( ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) /\ i e. ( ZZ>= ` j ) ) -> ( seq 0 ( + , A ) ` i ) e. CC )  | 
						
						
							| 71 | 
							
								69 44
							 | 
							syldan | 
							 |-  ( ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) /\ i e. ( ZZ>= ` j ) ) -> ( X ^ i ) e. CC )  | 
						
						
							| 72 | 
							
								70 71
							 | 
							absmuld | 
							 |-  ( ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) /\ i e. ( ZZ>= ` j ) ) -> ( abs ` ( ( seq 0 ( + , A ) ` i ) x. ( X ^ i ) ) ) = ( ( abs ` ( seq 0 ( + , A ) ` i ) ) x. ( abs ` ( X ^ i ) ) ) )  | 
						
						
							| 73 | 
							
								27
							 | 
							adantr | 
							 |-  ( ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) /\ i e. ( ZZ>= ` j ) ) -> X e. CC )  | 
						
						
							| 74 | 
							
								73 69
							 | 
							absexpd | 
							 |-  ( ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) /\ i e. ( ZZ>= ` j ) ) -> ( abs ` ( X ^ i ) ) = ( ( abs ` X ) ^ i ) )  | 
						
						
							| 75 | 
							
								74
							 | 
							oveq2d | 
							 |-  ( ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) /\ i e. ( ZZ>= ` j ) ) -> ( ( abs ` ( seq 0 ( + , A ) ` i ) ) x. ( abs ` ( X ^ i ) ) ) = ( ( abs ` ( seq 0 ( + , A ) ` i ) ) x. ( ( abs ` X ) ^ i ) ) )  | 
						
						
							| 76 | 
							
								72 75
							 | 
							eqtrd | 
							 |-  ( ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) /\ i e. ( ZZ>= ` j ) ) -> ( abs ` ( ( seq 0 ( + , A ) ` i ) x. ( X ^ i ) ) ) = ( ( abs ` ( seq 0 ( + , A ) ` i ) ) x. ( ( abs ` X ) ^ i ) ) )  | 
						
						
							| 77 | 
							
								70
							 | 
							abscld | 
							 |-  ( ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) /\ i e. ( ZZ>= ` j ) ) -> ( abs ` ( seq 0 ( + , A ) ` i ) ) e. RR )  | 
						
						
							| 78 | 
							
								
							 | 
							1red | 
							 |-  ( ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) /\ i e. ( ZZ>= ` j ) ) -> 1 e. RR )  | 
						
						
							| 79 | 
							
								69 30
							 | 
							syldan | 
							 |-  ( ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) /\ i e. ( ZZ>= ` j ) ) -> ( ( abs ` X ) ^ i ) e. RR )  | 
						
						
							| 80 | 
							
								71
							 | 
							absge0d | 
							 |-  ( ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) /\ i e. ( ZZ>= ` j ) ) -> 0 <_ ( abs ` ( X ^ i ) ) )  | 
						
						
							| 81 | 
							
								80 74
							 | 
							breqtrd | 
							 |-  ( ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) /\ i e. ( ZZ>= ` j ) ) -> 0 <_ ( ( abs ` X ) ^ i ) )  | 
						
						
							| 82 | 
							
								
							 | 
							simprr | 
							 |-  ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) -> A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 )  | 
						
						
							| 83 | 
							
								
							 | 
							2fveq3 | 
							 |-  ( m = i -> ( abs ` ( seq 0 ( + , A ) ` m ) ) = ( abs ` ( seq 0 ( + , A ) ` i ) ) )  | 
						
						
							| 84 | 
							
								83
							 | 
							breq1d | 
							 |-  ( m = i -> ( ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 <-> ( abs ` ( seq 0 ( + , A ) ` i ) ) < 1 ) )  | 
						
						
							| 85 | 
							
								84
							 | 
							rspccva | 
							 |-  ( ( A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 /\ i e. ( ZZ>= ` j ) ) -> ( abs ` ( seq 0 ( + , A ) ` i ) ) < 1 )  | 
						
						
							| 86 | 
							
								82 85
							 | 
							sylan | 
							 |-  ( ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) /\ i e. ( ZZ>= ` j ) ) -> ( abs ` ( seq 0 ( + , A ) ` i ) ) < 1 )  | 
						
						
							| 87 | 
							
								
							 | 
							1re | 
							 |-  1 e. RR  | 
						
						
							| 88 | 
							
								
							 | 
							ltle | 
							 |-  ( ( ( abs ` ( seq 0 ( + , A ) ` i ) ) e. RR /\ 1 e. RR ) -> ( ( abs ` ( seq 0 ( + , A ) ` i ) ) < 1 -> ( abs ` ( seq 0 ( + , A ) ` i ) ) <_ 1 ) )  | 
						
						
							| 89 | 
							
								77 87 88
							 | 
							sylancl | 
							 |-  ( ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) /\ i e. ( ZZ>= ` j ) ) -> ( ( abs ` ( seq 0 ( + , A ) ` i ) ) < 1 -> ( abs ` ( seq 0 ( + , A ) ` i ) ) <_ 1 ) )  | 
						
						
							| 90 | 
							
								86 89
							 | 
							mpd | 
							 |-  ( ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) /\ i e. ( ZZ>= ` j ) ) -> ( abs ` ( seq 0 ( + , A ) ` i ) ) <_ 1 )  | 
						
						
							| 91 | 
							
								77 78 79 81 90
							 | 
							lemul1ad | 
							 |-  ( ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) /\ i e. ( ZZ>= ` j ) ) -> ( ( abs ` ( seq 0 ( + , A ) ` i ) ) x. ( ( abs ` X ) ^ i ) ) <_ ( 1 x. ( ( abs ` X ) ^ i ) ) )  | 
						
						
							| 92 | 
							
								76 91
							 | 
							eqbrtrd | 
							 |-  ( ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) /\ i e. ( ZZ>= ` j ) ) -> ( abs ` ( ( seq 0 ( + , A ) ` i ) x. ( X ^ i ) ) ) <_ ( 1 x. ( ( abs ` X ) ^ i ) ) )  | 
						
						
							| 93 | 
							
								69 37
							 | 
							syl | 
							 |-  ( ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) /\ i e. ( ZZ>= ` j ) ) -> ( ( k e. NN0 |-> ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) ` i ) = ( ( seq 0 ( + , A ) ` i ) x. ( X ^ i ) ) )  | 
						
						
							| 94 | 
							
								93
							 | 
							fveq2d | 
							 |-  ( ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) /\ i e. ( ZZ>= ` j ) ) -> ( abs ` ( ( k e. NN0 |-> ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) ` i ) ) = ( abs ` ( ( seq 0 ( + , A ) ` i ) x. ( X ^ i ) ) ) )  | 
						
						
							| 95 | 
							
								69 19
							 | 
							syl | 
							 |-  ( ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) /\ i e. ( ZZ>= ` j ) ) -> ( ( n e. NN0 |-> ( ( abs ` X ) ^ n ) ) ` i ) = ( ( abs ` X ) ^ i ) )  | 
						
						
							| 96 | 
							
								95
							 | 
							oveq2d | 
							 |-  ( ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) /\ i e. ( ZZ>= ` j ) ) -> ( 1 x. ( ( n e. NN0 |-> ( ( abs ` X ) ^ n ) ) ` i ) ) = ( 1 x. ( ( abs ` X ) ^ i ) ) )  | 
						
						
							| 97 | 
							
								92 94 96
							 | 
							3brtr4d | 
							 |-  ( ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) /\ i e. ( ZZ>= ` j ) ) -> ( abs ` ( ( k e. NN0 |-> ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) ` i ) ) <_ ( 1 x. ( ( n e. NN0 |-> ( ( abs ` X ) ^ n ) ) ` i ) ) )  | 
						
						
							| 98 | 
							
								8 15 31 46 65 66 97
							 | 
							cvgcmpce | 
							 |-  ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) -> seq 0 ( + , ( k e. NN0 |-> ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) ) e. dom ~~> )  | 
						
						
							| 99 | 
							
								14 98
							 | 
							rexlimddv | 
							 |-  ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) -> seq 0 ( + , ( k e. NN0 |-> ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) ) e. dom ~~> )  |