| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							abelth.1 | 
							 |-  ( ph -> A : NN0 --> CC )  | 
						
						
							| 2 | 
							
								
							 | 
							abelth.2 | 
							 |-  ( ph -> seq 0 ( + , A ) e. dom ~~> )  | 
						
						
							| 3 | 
							
								
							 | 
							abelth.3 | 
							 |-  ( ph -> M e. RR )  | 
						
						
							| 4 | 
							
								
							 | 
							abelth.4 | 
							 |-  ( ph -> 0 <_ M )  | 
						
						
							| 5 | 
							
								
							 | 
							abelth.5 | 
							 |-  S = { z e. CC | ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) } | 
						
						
							| 6 | 
							
								
							 | 
							abelth.6 | 
							 |-  F = ( x e. S |-> sum_ n e. NN0 ( ( A ` n ) x. ( x ^ n ) ) )  | 
						
						
							| 7 | 
							
								
							 | 
							abelth.7 | 
							 |-  ( ph -> seq 0 ( + , A ) ~~> 0 )  | 
						
						
							| 8 | 
							
								
							 | 
							abelthlem6.1 | 
							 |-  ( ph -> X e. ( S \ { 1 } ) ) | 
						
						
							| 9 | 
							
								8
							 | 
							eldifad | 
							 |-  ( ph -> X e. S )  | 
						
						
							| 10 | 
							
								
							 | 
							oveq2 | 
							 |-  ( z = X -> ( 1 - z ) = ( 1 - X ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							fveq2d | 
							 |-  ( z = X -> ( abs ` ( 1 - z ) ) = ( abs ` ( 1 - X ) ) )  | 
						
						
							| 12 | 
							
								
							 | 
							fveq2 | 
							 |-  ( z = X -> ( abs ` z ) = ( abs ` X ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							oveq2d | 
							 |-  ( z = X -> ( 1 - ( abs ` z ) ) = ( 1 - ( abs ` X ) ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							oveq2d | 
							 |-  ( z = X -> ( M x. ( 1 - ( abs ` z ) ) ) = ( M x. ( 1 - ( abs ` X ) ) ) )  | 
						
						
							| 15 | 
							
								11 14
							 | 
							breq12d | 
							 |-  ( z = X -> ( ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) <-> ( abs ` ( 1 - X ) ) <_ ( M x. ( 1 - ( abs ` X ) ) ) ) )  | 
						
						
							| 16 | 
							
								15 5
							 | 
							elrab2 | 
							 |-  ( X e. S <-> ( X e. CC /\ ( abs ` ( 1 - X ) ) <_ ( M x. ( 1 - ( abs ` X ) ) ) ) )  | 
						
						
							| 17 | 
							
								9 16
							 | 
							sylib | 
							 |-  ( ph -> ( X e. CC /\ ( abs ` ( 1 - X ) ) <_ ( M x. ( 1 - ( abs ` X ) ) ) ) )  |