| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							abelth.1 | 
							 |-  ( ph -> A : NN0 --> CC )  | 
						
						
							| 2 | 
							
								
							 | 
							abelth.2 | 
							 |-  ( ph -> seq 0 ( + , A ) e. dom ~~> )  | 
						
						
							| 3 | 
							
								
							 | 
							abelth.3 | 
							 |-  ( ph -> M e. RR )  | 
						
						
							| 4 | 
							
								
							 | 
							abelth.4 | 
							 |-  ( ph -> 0 <_ M )  | 
						
						
							| 5 | 
							
								
							 | 
							abelth.5 | 
							 |-  S = { z e. CC | ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) } | 
						
						
							| 6 | 
							
								
							 | 
							abelth.6 | 
							 |-  F = ( x e. S |-> sum_ n e. NN0 ( ( A ` n ) x. ( x ^ n ) ) )  | 
						
						
							| 7 | 
							
								
							 | 
							abelth.7 | 
							 |-  ( ph -> seq 0 ( + , A ) ~~> 0 )  | 
						
						
							| 8 | 
							
								
							 | 
							nn0uz | 
							 |-  NN0 = ( ZZ>= ` 0 )  | 
						
						
							| 9 | 
							
								
							 | 
							0zd | 
							 |-  ( ( ph /\ R e. RR+ ) -> 0 e. ZZ )  | 
						
						
							| 10 | 
							
								
							 | 
							id | 
							 |-  ( R e. RR+ -> R e. RR+ )  | 
						
						
							| 11 | 
							
								3 4
							 | 
							ge0p1rpd | 
							 |-  ( ph -> ( M + 1 ) e. RR+ )  | 
						
						
							| 12 | 
							
								
							 | 
							rpdivcl | 
							 |-  ( ( R e. RR+ /\ ( M + 1 ) e. RR+ ) -> ( R / ( M + 1 ) ) e. RR+ )  | 
						
						
							| 13 | 
							
								10 11 12
							 | 
							syl2anr | 
							 |-  ( ( ph /\ R e. RR+ ) -> ( R / ( M + 1 ) ) e. RR+ )  | 
						
						
							| 14 | 
							
								
							 | 
							eqidd | 
							 |-  ( ( ( ph /\ R e. RR+ ) /\ k e. NN0 ) -> ( seq 0 ( + , A ) ` k ) = ( seq 0 ( + , A ) ` k ) )  | 
						
						
							| 15 | 
							
								7
							 | 
							adantr | 
							 |-  ( ( ph /\ R e. RR+ ) -> seq 0 ( + , A ) ~~> 0 )  | 
						
						
							| 16 | 
							
								8 9 13 14 15
							 | 
							climi0 | 
							 |-  ( ( ph /\ R e. RR+ ) -> E. j e. NN0 A. k e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` k ) ) < ( R / ( M + 1 ) ) )  | 
						
						
							| 17 | 
							
								13
							 | 
							adantr | 
							 |-  ( ( ( ph /\ R e. RR+ ) /\ ( j e. NN0 /\ A. k e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` k ) ) < ( R / ( M + 1 ) ) ) ) -> ( R / ( M + 1 ) ) e. RR+ )  | 
						
						
							| 18 | 
							
								
							 | 
							fzfid | 
							 |-  ( ph -> ( 0 ... ( j - 1 ) ) e. Fin )  | 
						
						
							| 19 | 
							
								
							 | 
							0zd | 
							 |-  ( ph -> 0 e. ZZ )  | 
						
						
							| 20 | 
							
								1
							 | 
							ffvelcdmda | 
							 |-  ( ( ph /\ w e. NN0 ) -> ( A ` w ) e. CC )  | 
						
						
							| 21 | 
							
								8 19 20
							 | 
							serf | 
							 |-  ( ph -> seq 0 ( + , A ) : NN0 --> CC )  | 
						
						
							| 22 | 
							
								
							 | 
							elfznn0 | 
							 |-  ( i e. ( 0 ... ( j - 1 ) ) -> i e. NN0 )  | 
						
						
							| 23 | 
							
								
							 | 
							ffvelcdm | 
							 |-  ( ( seq 0 ( + , A ) : NN0 --> CC /\ i e. NN0 ) -> ( seq 0 ( + , A ) ` i ) e. CC )  | 
						
						
							| 24 | 
							
								21 22 23
							 | 
							syl2an | 
							 |-  ( ( ph /\ i e. ( 0 ... ( j - 1 ) ) ) -> ( seq 0 ( + , A ) ` i ) e. CC )  | 
						
						
							| 25 | 
							
								24
							 | 
							abscld | 
							 |-  ( ( ph /\ i e. ( 0 ... ( j - 1 ) ) ) -> ( abs ` ( seq 0 ( + , A ) ` i ) ) e. RR )  | 
						
						
							| 26 | 
							
								18 25
							 | 
							fsumrecl | 
							 |-  ( ph -> sum_ i e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` i ) ) e. RR )  | 
						
						
							| 27 | 
							
								26
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ R e. RR+ ) /\ ( j e. NN0 /\ A. k e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` k ) ) < ( R / ( M + 1 ) ) ) ) -> sum_ i e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` i ) ) e. RR )  | 
						
						
							| 28 | 
							
								24
							 | 
							absge0d | 
							 |-  ( ( ph /\ i e. ( 0 ... ( j - 1 ) ) ) -> 0 <_ ( abs ` ( seq 0 ( + , A ) ` i ) ) )  | 
						
						
							| 29 | 
							
								18 25 28
							 | 
							fsumge0 | 
							 |-  ( ph -> 0 <_ sum_ i e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` i ) ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ R e. RR+ ) /\ ( j e. NN0 /\ A. k e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` k ) ) < ( R / ( M + 1 ) ) ) ) -> 0 <_ sum_ i e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` i ) ) )  | 
						
						
							| 31 | 
							
								27 30
							 | 
							ge0p1rpd | 
							 |-  ( ( ( ph /\ R e. RR+ ) /\ ( j e. NN0 /\ A. k e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` k ) ) < ( R / ( M + 1 ) ) ) ) -> ( sum_ i e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` i ) ) + 1 ) e. RR+ )  | 
						
						
							| 32 | 
							
								17 31
							 | 
							rpdivcld | 
							 |-  ( ( ( ph /\ R e. RR+ ) /\ ( j e. NN0 /\ A. k e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` k ) ) < ( R / ( M + 1 ) ) ) ) -> ( ( R / ( M + 1 ) ) / ( sum_ i e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` i ) ) + 1 ) ) e. RR+ )  | 
						
						
							| 33 | 
							
								1 2 3 4 5
							 | 
							abelthlem2 | 
							 |-  ( ph -> ( 1 e. S /\ ( S \ { 1 } ) C_ ( 0 ( ball ` ( abs o. - ) ) 1 ) ) ) | 
						
						
							| 34 | 
							
								33
							 | 
							simpld | 
							 |-  ( ph -> 1 e. S )  | 
						
						
							| 35 | 
							
								
							 | 
							oveq1 | 
							 |-  ( x = 1 -> ( x ^ n ) = ( 1 ^ n ) )  | 
						
						
							| 36 | 
							
								
							 | 
							nn0z | 
							 |-  ( n e. NN0 -> n e. ZZ )  | 
						
						
							| 37 | 
							
								
							 | 
							1exp | 
							 |-  ( n e. ZZ -> ( 1 ^ n ) = 1 )  | 
						
						
							| 38 | 
							
								36 37
							 | 
							syl | 
							 |-  ( n e. NN0 -> ( 1 ^ n ) = 1 )  | 
						
						
							| 39 | 
							
								35 38
							 | 
							sylan9eq | 
							 |-  ( ( x = 1 /\ n e. NN0 ) -> ( x ^ n ) = 1 )  | 
						
						
							| 40 | 
							
								39
							 | 
							oveq2d | 
							 |-  ( ( x = 1 /\ n e. NN0 ) -> ( ( A ` n ) x. ( x ^ n ) ) = ( ( A ` n ) x. 1 ) )  | 
						
						
							| 41 | 
							
								40
							 | 
							sumeq2dv | 
							 |-  ( x = 1 -> sum_ n e. NN0 ( ( A ` n ) x. ( x ^ n ) ) = sum_ n e. NN0 ( ( A ` n ) x. 1 ) )  | 
						
						
							| 42 | 
							
								
							 | 
							sumex | 
							 |-  sum_ n e. NN0 ( ( A ` n ) x. 1 ) e. _V  | 
						
						
							| 43 | 
							
								41 6 42
							 | 
							fvmpt | 
							 |-  ( 1 e. S -> ( F ` 1 ) = sum_ n e. NN0 ( ( A ` n ) x. 1 ) )  | 
						
						
							| 44 | 
							
								34 43
							 | 
							syl | 
							 |-  ( ph -> ( F ` 1 ) = sum_ n e. NN0 ( ( A ` n ) x. 1 ) )  | 
						
						
							| 45 | 
							
								1
							 | 
							ffvelcdmda | 
							 |-  ( ( ph /\ n e. NN0 ) -> ( A ` n ) e. CC )  | 
						
						
							| 46 | 
							
								45
							 | 
							mulridd | 
							 |-  ( ( ph /\ n e. NN0 ) -> ( ( A ` n ) x. 1 ) = ( A ` n ) )  | 
						
						
							| 47 | 
							
								46
							 | 
							eqcomd | 
							 |-  ( ( ph /\ n e. NN0 ) -> ( A ` n ) = ( ( A ` n ) x. 1 ) )  | 
						
						
							| 48 | 
							
								46 45
							 | 
							eqeltrd | 
							 |-  ( ( ph /\ n e. NN0 ) -> ( ( A ` n ) x. 1 ) e. CC )  | 
						
						
							| 49 | 
							
								8 19 47 48 7
							 | 
							isumclim | 
							 |-  ( ph -> sum_ n e. NN0 ( ( A ` n ) x. 1 ) = 0 )  | 
						
						
							| 50 | 
							
								44 49
							 | 
							eqtrd | 
							 |-  ( ph -> ( F ` 1 ) = 0 )  | 
						
						
							| 51 | 
							
								50
							 | 
							adantr | 
							 |-  ( ( ph /\ y e. S ) -> ( F ` 1 ) = 0 )  | 
						
						
							| 52 | 
							
								51
							 | 
							oveq1d | 
							 |-  ( ( ph /\ y e. S ) -> ( ( F ` 1 ) - ( F ` y ) ) = ( 0 - ( F ` y ) ) )  | 
						
						
							| 53 | 
							
								
							 | 
							df-neg | 
							 |-  -u ( F ` y ) = ( 0 - ( F ` y ) )  | 
						
						
							| 54 | 
							
								52 53
							 | 
							eqtr4di | 
							 |-  ( ( ph /\ y e. S ) -> ( ( F ` 1 ) - ( F ` y ) ) = -u ( F ` y ) )  | 
						
						
							| 55 | 
							
								54
							 | 
							fveq2d | 
							 |-  ( ( ph /\ y e. S ) -> ( abs ` ( ( F ` 1 ) - ( F ` y ) ) ) = ( abs ` -u ( F ` y ) ) )  | 
						
						
							| 56 | 
							
								1 2 3 4 5 6
							 | 
							abelthlem4 | 
							 |-  ( ph -> F : S --> CC )  | 
						
						
							| 57 | 
							
								56
							 | 
							ffvelcdmda | 
							 |-  ( ( ph /\ y e. S ) -> ( F ` y ) e. CC )  | 
						
						
							| 58 | 
							
								57
							 | 
							absnegd | 
							 |-  ( ( ph /\ y e. S ) -> ( abs ` -u ( F ` y ) ) = ( abs ` ( F ` y ) ) )  | 
						
						
							| 59 | 
							
								55 58
							 | 
							eqtrd | 
							 |-  ( ( ph /\ y e. S ) -> ( abs ` ( ( F ` 1 ) - ( F ` y ) ) ) = ( abs ` ( F ` y ) ) )  | 
						
						
							| 60 | 
							
								59
							 | 
							adantlr | 
							 |-  ( ( ( ph /\ R e. RR+ ) /\ y e. S ) -> ( abs ` ( ( F ` 1 ) - ( F ` y ) ) ) = ( abs ` ( F ` y ) ) )  | 
						
						
							| 61 | 
							
								60
							 | 
							ad2ant2r | 
							 |-  ( ( ( ( ph /\ R e. RR+ ) /\ ( j e. NN0 /\ A. k e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` k ) ) < ( R / ( M + 1 ) ) ) ) /\ ( y e. S /\ ( abs ` ( 1 - y ) ) < ( ( R / ( M + 1 ) ) / ( sum_ i e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` i ) ) + 1 ) ) ) ) -> ( abs ` ( ( F ` 1 ) - ( F ` y ) ) ) = ( abs ` ( F ` y ) ) )  | 
						
						
							| 62 | 
							
								
							 | 
							fveq2 | 
							 |-  ( y = 1 -> ( F ` y ) = ( F ` 1 ) )  | 
						
						
							| 63 | 
							
								62 50
							 | 
							sylan9eqr | 
							 |-  ( ( ph /\ y = 1 ) -> ( F ` y ) = 0 )  | 
						
						
							| 64 | 
							
								63
							 | 
							abs00bd | 
							 |-  ( ( ph /\ y = 1 ) -> ( abs ` ( F ` y ) ) = 0 )  | 
						
						
							| 65 | 
							
								64
							 | 
							ad5ant15 | 
							 |-  ( ( ( ( ( ph /\ R e. RR+ ) /\ ( j e. NN0 /\ A. k e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` k ) ) < ( R / ( M + 1 ) ) ) ) /\ ( y e. S /\ ( abs ` ( 1 - y ) ) < ( ( R / ( M + 1 ) ) / ( sum_ i e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` i ) ) + 1 ) ) ) ) /\ y = 1 ) -> ( abs ` ( F ` y ) ) = 0 )  | 
						
						
							| 66 | 
							
								
							 | 
							simpllr | 
							 |-  ( ( ( ( ph /\ R e. RR+ ) /\ ( j e. NN0 /\ A. k e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` k ) ) < ( R / ( M + 1 ) ) ) ) /\ ( y e. S /\ ( abs ` ( 1 - y ) ) < ( ( R / ( M + 1 ) ) / ( sum_ i e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` i ) ) + 1 ) ) ) ) -> R e. RR+ )  | 
						
						
							| 67 | 
							
								66
							 | 
							rpgt0d | 
							 |-  ( ( ( ( ph /\ R e. RR+ ) /\ ( j e. NN0 /\ A. k e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` k ) ) < ( R / ( M + 1 ) ) ) ) /\ ( y e. S /\ ( abs ` ( 1 - y ) ) < ( ( R / ( M + 1 ) ) / ( sum_ i e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` i ) ) + 1 ) ) ) ) -> 0 < R )  | 
						
						
							| 68 | 
							
								67
							 | 
							adantr | 
							 |-  ( ( ( ( ( ph /\ R e. RR+ ) /\ ( j e. NN0 /\ A. k e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` k ) ) < ( R / ( M + 1 ) ) ) ) /\ ( y e. S /\ ( abs ` ( 1 - y ) ) < ( ( R / ( M + 1 ) ) / ( sum_ i e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` i ) ) + 1 ) ) ) ) /\ y = 1 ) -> 0 < R )  | 
						
						
							| 69 | 
							
								65 68
							 | 
							eqbrtrd | 
							 |-  ( ( ( ( ( ph /\ R e. RR+ ) /\ ( j e. NN0 /\ A. k e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` k ) ) < ( R / ( M + 1 ) ) ) ) /\ ( y e. S /\ ( abs ` ( 1 - y ) ) < ( ( R / ( M + 1 ) ) / ( sum_ i e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` i ) ) + 1 ) ) ) ) /\ y = 1 ) -> ( abs ` ( F ` y ) ) < R )  | 
						
						
							| 70 | 
							
								1
							 | 
							ad3antrrr | 
							 |-  ( ( ( ( ph /\ R e. RR+ ) /\ ( j e. NN0 /\ A. k e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` k ) ) < ( R / ( M + 1 ) ) ) ) /\ ( ( y e. S /\ ( abs ` ( 1 - y ) ) < ( ( R / ( M + 1 ) ) / ( sum_ i e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` i ) ) + 1 ) ) ) /\ y =/= 1 ) ) -> A : NN0 --> CC )  | 
						
						
							| 71 | 
							
								2
							 | 
							ad3antrrr | 
							 |-  ( ( ( ( ph /\ R e. RR+ ) /\ ( j e. NN0 /\ A. k e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` k ) ) < ( R / ( M + 1 ) ) ) ) /\ ( ( y e. S /\ ( abs ` ( 1 - y ) ) < ( ( R / ( M + 1 ) ) / ( sum_ i e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` i ) ) + 1 ) ) ) /\ y =/= 1 ) ) -> seq 0 ( + , A ) e. dom ~~> )  | 
						
						
							| 72 | 
							
								3
							 | 
							ad3antrrr | 
							 |-  ( ( ( ( ph /\ R e. RR+ ) /\ ( j e. NN0 /\ A. k e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` k ) ) < ( R / ( M + 1 ) ) ) ) /\ ( ( y e. S /\ ( abs ` ( 1 - y ) ) < ( ( R / ( M + 1 ) ) / ( sum_ i e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` i ) ) + 1 ) ) ) /\ y =/= 1 ) ) -> M e. RR )  | 
						
						
							| 73 | 
							
								4
							 | 
							ad3antrrr | 
							 |-  ( ( ( ( ph /\ R e. RR+ ) /\ ( j e. NN0 /\ A. k e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` k ) ) < ( R / ( M + 1 ) ) ) ) /\ ( ( y e. S /\ ( abs ` ( 1 - y ) ) < ( ( R / ( M + 1 ) ) / ( sum_ i e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` i ) ) + 1 ) ) ) /\ y =/= 1 ) ) -> 0 <_ M )  | 
						
						
							| 74 | 
							
								7
							 | 
							ad3antrrr | 
							 |-  ( ( ( ( ph /\ R e. RR+ ) /\ ( j e. NN0 /\ A. k e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` k ) ) < ( R / ( M + 1 ) ) ) ) /\ ( ( y e. S /\ ( abs ` ( 1 - y ) ) < ( ( R / ( M + 1 ) ) / ( sum_ i e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` i ) ) + 1 ) ) ) /\ y =/= 1 ) ) -> seq 0 ( + , A ) ~~> 0 )  | 
						
						
							| 75 | 
							
								
							 | 
							simprll | 
							 |-  ( ( ( ( ph /\ R e. RR+ ) /\ ( j e. NN0 /\ A. k e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` k ) ) < ( R / ( M + 1 ) ) ) ) /\ ( ( y e. S /\ ( abs ` ( 1 - y ) ) < ( ( R / ( M + 1 ) ) / ( sum_ i e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` i ) ) + 1 ) ) ) /\ y =/= 1 ) ) -> y e. S )  | 
						
						
							| 76 | 
							
								
							 | 
							simprr | 
							 |-  ( ( ( ( ph /\ R e. RR+ ) /\ ( j e. NN0 /\ A. k e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` k ) ) < ( R / ( M + 1 ) ) ) ) /\ ( ( y e. S /\ ( abs ` ( 1 - y ) ) < ( ( R / ( M + 1 ) ) / ( sum_ i e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` i ) ) + 1 ) ) ) /\ y =/= 1 ) ) -> y =/= 1 )  | 
						
						
							| 77 | 
							
								
							 | 
							eldifsn | 
							 |-  ( y e. ( S \ { 1 } ) <-> ( y e. S /\ y =/= 1 ) ) | 
						
						
							| 78 | 
							
								75 76 77
							 | 
							sylanbrc | 
							 |-  ( ( ( ( ph /\ R e. RR+ ) /\ ( j e. NN0 /\ A. k e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` k ) ) < ( R / ( M + 1 ) ) ) ) /\ ( ( y e. S /\ ( abs ` ( 1 - y ) ) < ( ( R / ( M + 1 ) ) / ( sum_ i e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` i ) ) + 1 ) ) ) /\ y =/= 1 ) ) -> y e. ( S \ { 1 } ) ) | 
						
						
							| 79 | 
							
								13
							 | 
							ad2antrr | 
							 |-  ( ( ( ( ph /\ R e. RR+ ) /\ ( j e. NN0 /\ A. k e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` k ) ) < ( R / ( M + 1 ) ) ) ) /\ ( ( y e. S /\ ( abs ` ( 1 - y ) ) < ( ( R / ( M + 1 ) ) / ( sum_ i e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` i ) ) + 1 ) ) ) /\ y =/= 1 ) ) -> ( R / ( M + 1 ) ) e. RR+ )  | 
						
						
							| 80 | 
							
								
							 | 
							simplrl | 
							 |-  ( ( ( ( ph /\ R e. RR+ ) /\ ( j e. NN0 /\ A. k e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` k ) ) < ( R / ( M + 1 ) ) ) ) /\ ( ( y e. S /\ ( abs ` ( 1 - y ) ) < ( ( R / ( M + 1 ) ) / ( sum_ i e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` i ) ) + 1 ) ) ) /\ y =/= 1 ) ) -> j e. NN0 )  | 
						
						
							| 81 | 
							
								
							 | 
							simplrr | 
							 |-  ( ( ( ( ph /\ R e. RR+ ) /\ ( j e. NN0 /\ A. k e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` k ) ) < ( R / ( M + 1 ) ) ) ) /\ ( ( y e. S /\ ( abs ` ( 1 - y ) ) < ( ( R / ( M + 1 ) ) / ( sum_ i e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` i ) ) + 1 ) ) ) /\ y =/= 1 ) ) -> A. k e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` k ) ) < ( R / ( M + 1 ) ) )  | 
						
						
							| 82 | 
							
								
							 | 
							2fveq3 | 
							 |-  ( k = m -> ( abs ` ( seq 0 ( + , A ) ` k ) ) = ( abs ` ( seq 0 ( + , A ) ` m ) ) )  | 
						
						
							| 83 | 
							
								82
							 | 
							breq1d | 
							 |-  ( k = m -> ( ( abs ` ( seq 0 ( + , A ) ` k ) ) < ( R / ( M + 1 ) ) <-> ( abs ` ( seq 0 ( + , A ) ` m ) ) < ( R / ( M + 1 ) ) ) )  | 
						
						
							| 84 | 
							
								83
							 | 
							cbvralvw | 
							 |-  ( A. k e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` k ) ) < ( R / ( M + 1 ) ) <-> A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < ( R / ( M + 1 ) ) )  | 
						
						
							| 85 | 
							
								81 84
							 | 
							sylib | 
							 |-  ( ( ( ( ph /\ R e. RR+ ) /\ ( j e. NN0 /\ A. k e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` k ) ) < ( R / ( M + 1 ) ) ) ) /\ ( ( y e. S /\ ( abs ` ( 1 - y ) ) < ( ( R / ( M + 1 ) ) / ( sum_ i e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` i ) ) + 1 ) ) ) /\ y =/= 1 ) ) -> A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < ( R / ( M + 1 ) ) )  | 
						
						
							| 86 | 
							
								
							 | 
							simprlr | 
							 |-  ( ( ( ( ph /\ R e. RR+ ) /\ ( j e. NN0 /\ A. k e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` k ) ) < ( R / ( M + 1 ) ) ) ) /\ ( ( y e. S /\ ( abs ` ( 1 - y ) ) < ( ( R / ( M + 1 ) ) / ( sum_ i e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` i ) ) + 1 ) ) ) /\ y =/= 1 ) ) -> ( abs ` ( 1 - y ) ) < ( ( R / ( M + 1 ) ) / ( sum_ i e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` i ) ) + 1 ) ) )  | 
						
						
							| 87 | 
							
								
							 | 
							2fveq3 | 
							 |-  ( i = n -> ( abs ` ( seq 0 ( + , A ) ` i ) ) = ( abs ` ( seq 0 ( + , A ) ` n ) ) )  | 
						
						
							| 88 | 
							
								87
							 | 
							cbvsumv | 
							 |-  sum_ i e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` i ) ) = sum_ n e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` n ) )  | 
						
						
							| 89 | 
							
								88
							 | 
							oveq1i | 
							 |-  ( sum_ i e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` i ) ) + 1 ) = ( sum_ n e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` n ) ) + 1 )  | 
						
						
							| 90 | 
							
								89
							 | 
							oveq2i | 
							 |-  ( ( R / ( M + 1 ) ) / ( sum_ i e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` i ) ) + 1 ) ) = ( ( R / ( M + 1 ) ) / ( sum_ n e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` n ) ) + 1 ) )  | 
						
						
							| 91 | 
							
								86 90
							 | 
							breqtrdi | 
							 |-  ( ( ( ( ph /\ R e. RR+ ) /\ ( j e. NN0 /\ A. k e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` k ) ) < ( R / ( M + 1 ) ) ) ) /\ ( ( y e. S /\ ( abs ` ( 1 - y ) ) < ( ( R / ( M + 1 ) ) / ( sum_ i e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` i ) ) + 1 ) ) ) /\ y =/= 1 ) ) -> ( abs ` ( 1 - y ) ) < ( ( R / ( M + 1 ) ) / ( sum_ n e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` n ) ) + 1 ) ) )  | 
						
						
							| 92 | 
							
								70 71 72 73 5 6 74 78 79 80 85 91
							 | 
							abelthlem7 | 
							 |-  ( ( ( ( ph /\ R e. RR+ ) /\ ( j e. NN0 /\ A. k e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` k ) ) < ( R / ( M + 1 ) ) ) ) /\ ( ( y e. S /\ ( abs ` ( 1 - y ) ) < ( ( R / ( M + 1 ) ) / ( sum_ i e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` i ) ) + 1 ) ) ) /\ y =/= 1 ) ) -> ( abs ` ( F ` y ) ) < ( ( M + 1 ) x. ( R / ( M + 1 ) ) ) )  | 
						
						
							| 93 | 
							
								
							 | 
							rpcn | 
							 |-  ( R e. RR+ -> R e. CC )  | 
						
						
							| 94 | 
							
								93
							 | 
							adantl | 
							 |-  ( ( ph /\ R e. RR+ ) -> R e. CC )  | 
						
						
							| 95 | 
							
								11
							 | 
							adantr | 
							 |-  ( ( ph /\ R e. RR+ ) -> ( M + 1 ) e. RR+ )  | 
						
						
							| 96 | 
							
								95
							 | 
							rpcnd | 
							 |-  ( ( ph /\ R e. RR+ ) -> ( M + 1 ) e. CC )  | 
						
						
							| 97 | 
							
								95
							 | 
							rpne0d | 
							 |-  ( ( ph /\ R e. RR+ ) -> ( M + 1 ) =/= 0 )  | 
						
						
							| 98 | 
							
								94 96 97
							 | 
							divcan2d | 
							 |-  ( ( ph /\ R e. RR+ ) -> ( ( M + 1 ) x. ( R / ( M + 1 ) ) ) = R )  | 
						
						
							| 99 | 
							
								98
							 | 
							ad2antrr | 
							 |-  ( ( ( ( ph /\ R e. RR+ ) /\ ( j e. NN0 /\ A. k e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` k ) ) < ( R / ( M + 1 ) ) ) ) /\ ( ( y e. S /\ ( abs ` ( 1 - y ) ) < ( ( R / ( M + 1 ) ) / ( sum_ i e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` i ) ) + 1 ) ) ) /\ y =/= 1 ) ) -> ( ( M + 1 ) x. ( R / ( M + 1 ) ) ) = R )  | 
						
						
							| 100 | 
							
								92 99
							 | 
							breqtrd | 
							 |-  ( ( ( ( ph /\ R e. RR+ ) /\ ( j e. NN0 /\ A. k e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` k ) ) < ( R / ( M + 1 ) ) ) ) /\ ( ( y e. S /\ ( abs ` ( 1 - y ) ) < ( ( R / ( M + 1 ) ) / ( sum_ i e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` i ) ) + 1 ) ) ) /\ y =/= 1 ) ) -> ( abs ` ( F ` y ) ) < R )  | 
						
						
							| 101 | 
							
								100
							 | 
							anassrs | 
							 |-  ( ( ( ( ( ph /\ R e. RR+ ) /\ ( j e. NN0 /\ A. k e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` k ) ) < ( R / ( M + 1 ) ) ) ) /\ ( y e. S /\ ( abs ` ( 1 - y ) ) < ( ( R / ( M + 1 ) ) / ( sum_ i e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` i ) ) + 1 ) ) ) ) /\ y =/= 1 ) -> ( abs ` ( F ` y ) ) < R )  | 
						
						
							| 102 | 
							
								69 101
							 | 
							pm2.61dane | 
							 |-  ( ( ( ( ph /\ R e. RR+ ) /\ ( j e. NN0 /\ A. k e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` k ) ) < ( R / ( M + 1 ) ) ) ) /\ ( y e. S /\ ( abs ` ( 1 - y ) ) < ( ( R / ( M + 1 ) ) / ( sum_ i e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` i ) ) + 1 ) ) ) ) -> ( abs ` ( F ` y ) ) < R )  | 
						
						
							| 103 | 
							
								61 102
							 | 
							eqbrtrd | 
							 |-  ( ( ( ( ph /\ R e. RR+ ) /\ ( j e. NN0 /\ A. k e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` k ) ) < ( R / ( M + 1 ) ) ) ) /\ ( y e. S /\ ( abs ` ( 1 - y ) ) < ( ( R / ( M + 1 ) ) / ( sum_ i e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` i ) ) + 1 ) ) ) ) -> ( abs ` ( ( F ` 1 ) - ( F ` y ) ) ) < R )  | 
						
						
							| 104 | 
							
								103
							 | 
							expr | 
							 |-  ( ( ( ( ph /\ R e. RR+ ) /\ ( j e. NN0 /\ A. k e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` k ) ) < ( R / ( M + 1 ) ) ) ) /\ y e. S ) -> ( ( abs ` ( 1 - y ) ) < ( ( R / ( M + 1 ) ) / ( sum_ i e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` i ) ) + 1 ) ) -> ( abs ` ( ( F ` 1 ) - ( F ` y ) ) ) < R ) )  | 
						
						
							| 105 | 
							
								104
							 | 
							ralrimiva | 
							 |-  ( ( ( ph /\ R e. RR+ ) /\ ( j e. NN0 /\ A. k e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` k ) ) < ( R / ( M + 1 ) ) ) ) -> A. y e. S ( ( abs ` ( 1 - y ) ) < ( ( R / ( M + 1 ) ) / ( sum_ i e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` i ) ) + 1 ) ) -> ( abs ` ( ( F ` 1 ) - ( F ` y ) ) ) < R ) )  | 
						
						
							| 106 | 
							
								
							 | 
							breq2 | 
							 |-  ( w = ( ( R / ( M + 1 ) ) / ( sum_ i e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` i ) ) + 1 ) ) -> ( ( abs ` ( 1 - y ) ) < w <-> ( abs ` ( 1 - y ) ) < ( ( R / ( M + 1 ) ) / ( sum_ i e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` i ) ) + 1 ) ) ) )  | 
						
						
							| 107 | 
							
								106
							 | 
							rspceaimv | 
							 |-  ( ( ( ( R / ( M + 1 ) ) / ( sum_ i e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` i ) ) + 1 ) ) e. RR+ /\ A. y e. S ( ( abs ` ( 1 - y ) ) < ( ( R / ( M + 1 ) ) / ( sum_ i e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` i ) ) + 1 ) ) -> ( abs ` ( ( F ` 1 ) - ( F ` y ) ) ) < R ) ) -> E. w e. RR+ A. y e. S ( ( abs ` ( 1 - y ) ) < w -> ( abs ` ( ( F ` 1 ) - ( F ` y ) ) ) < R ) )  | 
						
						
							| 108 | 
							
								32 105 107
							 | 
							syl2anc | 
							 |-  ( ( ( ph /\ R e. RR+ ) /\ ( j e. NN0 /\ A. k e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` k ) ) < ( R / ( M + 1 ) ) ) ) -> E. w e. RR+ A. y e. S ( ( abs ` ( 1 - y ) ) < w -> ( abs ` ( ( F ` 1 ) - ( F ` y ) ) ) < R ) )  | 
						
						
							| 109 | 
							
								16 108
							 | 
							rexlimddv | 
							 |-  ( ( ph /\ R e. RR+ ) -> E. w e. RR+ A. y e. S ( ( abs ` ( 1 - y ) ) < w -> ( abs ` ( ( F ` 1 ) - ( F ` y ) ) ) < R ) )  |