Description: Equality of a class variable and a class abstraction. Commuted form of abeq2 . (Contributed by NM, 20-Aug-1993)
Ref | Expression | ||
---|---|---|---|
Assertion | abeq1 | |- ( { x | ph } = A <-> A. x ( ph <-> x e. A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abeq2 | |- ( A = { x | ph } <-> A. x ( x e. A <-> ph ) ) |
|
2 | eqcom | |- ( { x | ph } = A <-> A = { x | ph } ) |
|
3 | bicom | |- ( ( ph <-> x e. A ) <-> ( x e. A <-> ph ) ) |
|
4 | 3 | albii | |- ( A. x ( ph <-> x e. A ) <-> A. x ( x e. A <-> ph ) ) |
5 | 1 2 4 | 3bitr4i | |- ( { x | ph } = A <-> A. x ( ph <-> x e. A ) ) |