Description: Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 3-Apr-1996) (Proof shortened by Wolf Lammen, 15-Nov-2019)
Ref | Expression | ||
---|---|---|---|
Hypothesis | abeq2i.1 | |- A = { x | ph } |
|
Assertion | abeq2i | |- ( x e. A <-> ph ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abeq2i.1 | |- A = { x | ph } |
|
2 | 1 | a1i | |- ( T. -> A = { x | ph } ) |
3 | 2 | abeq2d | |- ( T. -> ( x e. A <-> ph ) ) |
4 | 3 | mptru | |- ( x e. A <-> ph ) |