Metamath Proof Explorer


Theorem abeq2w

Description: Version of abeq2 using implicit substitution, which requires fewer axioms. (Contributed by GG and AV, 18-Sep-2024)

Ref Expression
Hypothesis abeq2w.1
|- ( x = y -> ( ph <-> ps ) )
Assertion abeq2w
|- ( A = { x | ph } <-> A. y ( y e. A <-> ps ) )

Proof

Step Hyp Ref Expression
1 abeq2w.1
 |-  ( x = y -> ( ph <-> ps ) )
2 dfcleq
 |-  ( A = { x | ph } <-> A. y ( y e. A <-> y e. { x | ph } ) )
3 df-clab
 |-  ( y e. { x | ph } <-> [ y / x ] ph )
4 1 sbievw
 |-  ( [ y / x ] ph <-> ps )
5 3 4 bitri
 |-  ( y e. { x | ph } <-> ps )
6 5 bibi2i
 |-  ( ( y e. A <-> y e. { x | ph } ) <-> ( y e. A <-> ps ) )
7 6 albii
 |-  ( A. y ( y e. A <-> y e. { x | ph } ) <-> A. y ( y e. A <-> ps ) )
8 2 7 bitri
 |-  ( A = { x | ph } <-> A. y ( y e. A <-> ps ) )