Description: Intersection with class abstraction. (Contributed by Peter Mazsa, 21-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abeqin.1 | |- A = ( B i^i C ) |
|
| abeqin.2 | |- B = { x | ph } |
||
| Assertion | abeqin | |- A = { x e. C | ph } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abeqin.1 | |- A = ( B i^i C ) |
|
| 2 | abeqin.2 | |- B = { x | ph } |
|
| 3 | 2 | ineq1i | |- ( B i^i C ) = ( { x | ph } i^i C ) |
| 4 | dfrab2 | |- { x e. C | ph } = ( { x | ph } i^i C ) |
|
| 5 | 3 1 4 | 3eqtr4i | |- A = { x e. C | ph } |