Description: Conditions for a class abstraction to be a set. Remark: This proof is shorter than a proof using abexd . (Contributed by AV, 19-Apr-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | abex.1 | |- ( ph -> x e. A ) |
|
abex.2 | |- A e. _V |
||
Assertion | abex | |- { x | ph } e. _V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abex.1 | |- ( ph -> x e. A ) |
|
2 | abex.2 | |- A e. _V |
|
3 | abss | |- ( { x | ph } C_ A <-> A. x ( ph -> x e. A ) ) |
|
4 | 3 1 | mpgbir | |- { x | ph } C_ A |
5 | 2 4 | ssexi | |- { x | ph } e. _V |