Metamath Proof Explorer


Theorem abex

Description: Conditions for a class abstraction to be a set. Remark: This proof is shorter than a proof using abexd . (Contributed by AV, 19-Apr-2025)

Ref Expression
Hypotheses abex.1
|- ( ph -> x e. A )
abex.2
|- A e. _V
Assertion abex
|- { x | ph } e. _V

Proof

Step Hyp Ref Expression
1 abex.1
 |-  ( ph -> x e. A )
2 abex.2
 |-  A e. _V
3 abss
 |-  ( { x | ph } C_ A <-> A. x ( ph -> x e. A ) )
4 3 1 mpgbir
 |-  { x | ph } C_ A
5 2 4 ssexi
 |-  { x | ph } e. _V