Description: Conditions for a class abstraction to be a set, deduction form. (Contributed by AV, 19-Apr-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | abexd.1 | |- ( ( ph /\ ps ) -> x e. A ) |
|
abexd.2 | |- ( ph -> A e. V ) |
||
Assertion | abexd | |- ( ph -> { x | ps } e. _V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abexd.1 | |- ( ( ph /\ ps ) -> x e. A ) |
|
2 | abexd.2 | |- ( ph -> A e. V ) |
|
3 | 1 | ex | |- ( ph -> ( ps -> x e. A ) ) |
4 | 3 | alrimiv | |- ( ph -> A. x ( ps -> x e. A ) ) |
5 | abss | |- ( { x | ps } C_ A <-> A. x ( ps -> x e. A ) ) |
|
6 | 4 5 | sylibr | |- ( ph -> { x | ps } C_ A ) |
7 | 2 6 | ssexd | |- ( ph -> { x | ps } e. _V ) |