Metamath Proof Explorer


Theorem abexd

Description: Conditions for a class abstraction to be a set, deduction form. (Contributed by AV, 19-Apr-2025)

Ref Expression
Hypotheses abexd.1
|- ( ( ph /\ ps ) -> x e. A )
abexd.2
|- ( ph -> A e. V )
Assertion abexd
|- ( ph -> { x | ps } e. _V )

Proof

Step Hyp Ref Expression
1 abexd.1
 |-  ( ( ph /\ ps ) -> x e. A )
2 abexd.2
 |-  ( ph -> A e. V )
3 1 ex
 |-  ( ph -> ( ps -> x e. A ) )
4 3 alrimiv
 |-  ( ph -> A. x ( ps -> x e. A ) )
5 abss
 |-  ( { x | ps } C_ A <-> A. x ( ps -> x e. A ) )
6 4 5 sylibr
 |-  ( ph -> { x | ps } C_ A )
7 2 6 ssexd
 |-  ( ph -> { x | ps } e. _V )