Metamath Proof Explorer


Theorem abexex

Description: A condition where a class abstraction continues to exist after its wff is existentially quantified. (Contributed by NM, 4-Mar-2007)

Ref Expression
Hypotheses abexex.1
|- A e. _V
abexex.2
|- ( ph -> x e. A )
abexex.3
|- { y | ph } e. _V
Assertion abexex
|- { y | E. x ph } e. _V

Proof

Step Hyp Ref Expression
1 abexex.1
 |-  A e. _V
2 abexex.2
 |-  ( ph -> x e. A )
3 abexex.3
 |-  { y | ph } e. _V
4 df-rex
 |-  ( E. x e. A ph <-> E. x ( x e. A /\ ph ) )
5 2 pm4.71ri
 |-  ( ph <-> ( x e. A /\ ph ) )
6 5 exbii
 |-  ( E. x ph <-> E. x ( x e. A /\ ph ) )
7 4 6 bitr4i
 |-  ( E. x e. A ph <-> E. x ph )
8 7 abbii
 |-  { y | E. x e. A ph } = { y | E. x ph }
9 1 3 abrexex2
 |-  { y | E. x e. A ph } e. _V
10 8 9 eqeltrri
 |-  { y | E. x ph } e. _V