| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							abfmpel.1 | 
							 |-  F = ( x e. V |-> { y | ph } ) | 
						
						
							| 2 | 
							
								
							 | 
							abfmpel.2 | 
							 |-  { y | ph } e. _V | 
						
						
							| 3 | 
							
								
							 | 
							abfmpel.3 | 
							 |-  ( ( x = A /\ y = B ) -> ( ph <-> ps ) )  | 
						
						
							| 4 | 
							
								2
							 | 
							csbex | 
							 |-  [_ A / x ]_ { y | ph } e. _V | 
						
						
							| 5 | 
							
								1
							 | 
							fvmpts | 
							 |-  ( ( A e. V /\ [_ A / x ]_ { y | ph } e. _V ) -> ( F ` A ) = [_ A / x ]_ { y | ph } ) | 
						
						
							| 6 | 
							
								4 5
							 | 
							mpan2 | 
							 |-  ( A e. V -> ( F ` A ) = [_ A / x ]_ { y | ph } ) | 
						
						
							| 7 | 
							
								
							 | 
							csbab | 
							 |-  [_ A / x ]_ { y | ph } = { y | [. A / x ]. ph } | 
						
						
							| 8 | 
							
								6 7
							 | 
							eqtrdi | 
							 |-  ( A e. V -> ( F ` A ) = { y | [. A / x ]. ph } ) | 
						
						
							| 9 | 
							
								8
							 | 
							eleq2d | 
							 |-  ( A e. V -> ( B e. ( F ` A ) <-> B e. { y | [. A / x ]. ph } ) ) | 
						
						
							| 10 | 
							
								9
							 | 
							adantr | 
							 |-  ( ( A e. V /\ B e. W ) -> ( B e. ( F ` A ) <-> B e. { y | [. A / x ]. ph } ) ) | 
						
						
							| 11 | 
							
								
							 | 
							simpl | 
							 |-  ( ( A e. V /\ y = B ) -> A e. V )  | 
						
						
							| 12 | 
							
								3
							 | 
							ancoms | 
							 |-  ( ( y = B /\ x = A ) -> ( ph <-> ps ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							adantll | 
							 |-  ( ( ( A e. V /\ y = B ) /\ x = A ) -> ( ph <-> ps ) )  | 
						
						
							| 14 | 
							
								11 13
							 | 
							sbcied | 
							 |-  ( ( A e. V /\ y = B ) -> ( [. A / x ]. ph <-> ps ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							ex | 
							 |-  ( A e. V -> ( y = B -> ( [. A / x ]. ph <-> ps ) ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							alrimiv | 
							 |-  ( A e. V -> A. y ( y = B -> ( [. A / x ]. ph <-> ps ) ) )  | 
						
						
							| 17 | 
							
								
							 | 
							elabgt | 
							 |-  ( ( B e. W /\ A. y ( y = B -> ( [. A / x ]. ph <-> ps ) ) ) -> ( B e. { y | [. A / x ]. ph } <-> ps ) ) | 
						
						
							| 18 | 
							
								16 17
							 | 
							sylan2 | 
							 |-  ( ( B e. W /\ A e. V ) -> ( B e. { y | [. A / x ]. ph } <-> ps ) ) | 
						
						
							| 19 | 
							
								18
							 | 
							ancoms | 
							 |-  ( ( A e. V /\ B e. W ) -> ( B e. { y | [. A / x ]. ph } <-> ps ) ) | 
						
						
							| 20 | 
							
								10 19
							 | 
							bitrd | 
							 |-  ( ( A e. V /\ B e. W ) -> ( B e. ( F ` A ) <-> ps ) )  |