| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							abfmpeld.1 | 
							 |-  F = ( x e. V |-> { y | ps } ) | 
						
						
							| 2 | 
							
								
							 | 
							abfmpeld.2 | 
							 |-  ( ph -> { y | ps } e. _V ) | 
						
						
							| 3 | 
							
								
							 | 
							abfmpeld.3 | 
							 |-  ( ph -> ( ( x = A /\ y = B ) -> ( ps <-> ch ) ) )  | 
						
						
							| 4 | 
							
								2
							 | 
							alrimiv | 
							 |-  ( ph -> A. x { y | ps } e. _V ) | 
						
						
							| 5 | 
							
								
							 | 
							csbexg | 
							 |-  ( A. x { y | ps } e. _V -> [_ A / x ]_ { y | ps } e. _V ) | 
						
						
							| 6 | 
							
								4 5
							 | 
							syl | 
							 |-  ( ph -> [_ A / x ]_ { y | ps } e. _V ) | 
						
						
							| 7 | 
							
								1
							 | 
							fvmpts | 
							 |-  ( ( A e. V /\ [_ A / x ]_ { y | ps } e. _V ) -> ( F ` A ) = [_ A / x ]_ { y | ps } ) | 
						
						
							| 8 | 
							
								6 7
							 | 
							sylan2 | 
							 |-  ( ( A e. V /\ ph ) -> ( F ` A ) = [_ A / x ]_ { y | ps } ) | 
						
						
							| 9 | 
							
								
							 | 
							csbab | 
							 |-  [_ A / x ]_ { y | ps } = { y | [. A / x ]. ps } | 
						
						
							| 10 | 
							
								8 9
							 | 
							eqtrdi | 
							 |-  ( ( A e. V /\ ph ) -> ( F ` A ) = { y | [. A / x ]. ps } ) | 
						
						
							| 11 | 
							
								10
							 | 
							eleq2d | 
							 |-  ( ( A e. V /\ ph ) -> ( B e. ( F ` A ) <-> B e. { y | [. A / x ]. ps } ) ) | 
						
						
							| 12 | 
							
								11
							 | 
							adantl | 
							 |-  ( ( B e. W /\ ( A e. V /\ ph ) ) -> ( B e. ( F ` A ) <-> B e. { y | [. A / x ]. ps } ) ) | 
						
						
							| 13 | 
							
								
							 | 
							simpll | 
							 |-  ( ( ( A e. V /\ ph ) /\ y = B ) -> A e. V )  | 
						
						
							| 14 | 
							
								3
							 | 
							ancomsd | 
							 |-  ( ph -> ( ( y = B /\ x = A ) -> ( ps <-> ch ) ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							adantl | 
							 |-  ( ( A e. V /\ ph ) -> ( ( y = B /\ x = A ) -> ( ps <-> ch ) ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							impl | 
							 |-  ( ( ( ( A e. V /\ ph ) /\ y = B ) /\ x = A ) -> ( ps <-> ch ) )  | 
						
						
							| 17 | 
							
								13 16
							 | 
							sbcied | 
							 |-  ( ( ( A e. V /\ ph ) /\ y = B ) -> ( [. A / x ]. ps <-> ch ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							ex | 
							 |-  ( ( A e. V /\ ph ) -> ( y = B -> ( [. A / x ]. ps <-> ch ) ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							alrimiv | 
							 |-  ( ( A e. V /\ ph ) -> A. y ( y = B -> ( [. A / x ]. ps <-> ch ) ) )  | 
						
						
							| 20 | 
							
								
							 | 
							elabgt | 
							 |-  ( ( B e. W /\ A. y ( y = B -> ( [. A / x ]. ps <-> ch ) ) ) -> ( B e. { y | [. A / x ]. ps } <-> ch ) ) | 
						
						
							| 21 | 
							
								19 20
							 | 
							sylan2 | 
							 |-  ( ( B e. W /\ ( A e. V /\ ph ) ) -> ( B e. { y | [. A / x ]. ps } <-> ch ) ) | 
						
						
							| 22 | 
							
								12 21
							 | 
							bitrd | 
							 |-  ( ( B e. W /\ ( A e. V /\ ph ) ) -> ( B e. ( F ` A ) <-> ch ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							an13s | 
							 |-  ( ( ph /\ ( A e. V /\ B e. W ) ) -> ( B e. ( F ` A ) <-> ch ) )  | 
						
						
							| 24 | 
							
								23
							 | 
							ex | 
							 |-  ( ph -> ( ( A e. V /\ B e. W ) -> ( B e. ( F ` A ) <-> ch ) ) )  |