Description: A simplification of class abstraction. Theorem 5.2 of Quine p. 35. (Contributed by NM, 5-Sep-2011) (Revised by Mario Carneiro, 7-Oct-2016) (Proof shortened by Wolf Lammen, 26-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypothesis | abid2f.1 | |- F/_ x A |
|
Assertion | abid2f | |- { x | x e. A } = A |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abid2f.1 | |- F/_ x A |
|
2 | 1 | eqabf | |- ( A = { x | x e. A } <-> A. x ( x e. A <-> x e. A ) ) |
3 | biid | |- ( x e. A <-> x e. A ) |
|
4 | 2 3 | mpgbir | |- A = { x | x e. A } |
5 | 4 | eqcomi | |- { x | x e. A } = A |