Metamath Proof Explorer


Theorem abidnf

Description: Identity used to create closed-form versions of bound-variable hypothesis builders for class expressions. (Contributed by NM, 10-Nov-2005) (Proof shortened by Mario Carneiro, 12-Oct-2016)

Ref Expression
Assertion abidnf
|- ( F/_ x A -> { z | A. x z e. A } = A )

Proof

Step Hyp Ref Expression
1 sp
 |-  ( A. x z e. A -> z e. A )
2 nfcr
 |-  ( F/_ x A -> F/ x z e. A )
3 2 nf5rd
 |-  ( F/_ x A -> ( z e. A -> A. x z e. A ) )
4 1 3 impbid2
 |-  ( F/_ x A -> ( A. x z e. A <-> z e. A ) )
5 4 abbi1dv
 |-  ( F/_ x A -> { z | A. x z e. A } = A )