| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ablsubadd.b |  |-  B = ( Base ` G ) | 
						
							| 2 |  | ablsubadd.p |  |-  .+ = ( +g ` G ) | 
						
							| 3 |  | ablsubadd.m |  |-  .- = ( -g ` G ) | 
						
							| 4 |  | ablgrp |  |-  ( G e. Abel -> G e. Grp ) | 
						
							| 5 | 4 | 3ad2ant1 |  |-  ( ( G e. Abel /\ ( X e. B /\ Y e. B ) /\ ( Z e. B /\ W e. B ) ) -> G e. Grp ) | 
						
							| 6 |  | simp2l |  |-  ( ( G e. Abel /\ ( X e. B /\ Y e. B ) /\ ( Z e. B /\ W e. B ) ) -> X e. B ) | 
						
							| 7 |  | simp2r |  |-  ( ( G e. Abel /\ ( X e. B /\ Y e. B ) /\ ( Z e. B /\ W e. B ) ) -> Y e. B ) | 
						
							| 8 | 1 2 | grpcl |  |-  ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( X .+ Y ) e. B ) | 
						
							| 9 | 5 6 7 8 | syl3anc |  |-  ( ( G e. Abel /\ ( X e. B /\ Y e. B ) /\ ( Z e. B /\ W e. B ) ) -> ( X .+ Y ) e. B ) | 
						
							| 10 |  | simp3l |  |-  ( ( G e. Abel /\ ( X e. B /\ Y e. B ) /\ ( Z e. B /\ W e. B ) ) -> Z e. B ) | 
						
							| 11 |  | simp3r |  |-  ( ( G e. Abel /\ ( X e. B /\ Y e. B ) /\ ( Z e. B /\ W e. B ) ) -> W e. B ) | 
						
							| 12 | 1 2 | grpcl |  |-  ( ( G e. Grp /\ Z e. B /\ W e. B ) -> ( Z .+ W ) e. B ) | 
						
							| 13 | 5 10 11 12 | syl3anc |  |-  ( ( G e. Abel /\ ( X e. B /\ Y e. B ) /\ ( Z e. B /\ W e. B ) ) -> ( Z .+ W ) e. B ) | 
						
							| 14 | 1 2 | grpcl |  |-  ( ( G e. Grp /\ Z e. B /\ Y e. B ) -> ( Z .+ Y ) e. B ) | 
						
							| 15 | 5 10 7 14 | syl3anc |  |-  ( ( G e. Abel /\ ( X e. B /\ Y e. B ) /\ ( Z e. B /\ W e. B ) ) -> ( Z .+ Y ) e. B ) | 
						
							| 16 | 1 3 | grpsubrcan |  |-  ( ( G e. Grp /\ ( ( X .+ Y ) e. B /\ ( Z .+ W ) e. B /\ ( Z .+ Y ) e. B ) ) -> ( ( ( X .+ Y ) .- ( Z .+ Y ) ) = ( ( Z .+ W ) .- ( Z .+ Y ) ) <-> ( X .+ Y ) = ( Z .+ W ) ) ) | 
						
							| 17 | 5 9 13 15 16 | syl13anc |  |-  ( ( G e. Abel /\ ( X e. B /\ Y e. B ) /\ ( Z e. B /\ W e. B ) ) -> ( ( ( X .+ Y ) .- ( Z .+ Y ) ) = ( ( Z .+ W ) .- ( Z .+ Y ) ) <-> ( X .+ Y ) = ( Z .+ W ) ) ) | 
						
							| 18 |  | simp1 |  |-  ( ( G e. Abel /\ ( X e. B /\ Y e. B ) /\ ( Z e. B /\ W e. B ) ) -> G e. Abel ) | 
						
							| 19 | 1 2 3 | ablsub4 |  |-  ( ( G e. Abel /\ ( X e. B /\ Y e. B ) /\ ( Z e. B /\ Y e. B ) ) -> ( ( X .+ Y ) .- ( Z .+ Y ) ) = ( ( X .- Z ) .+ ( Y .- Y ) ) ) | 
						
							| 20 | 18 6 7 10 7 19 | syl122anc |  |-  ( ( G e. Abel /\ ( X e. B /\ Y e. B ) /\ ( Z e. B /\ W e. B ) ) -> ( ( X .+ Y ) .- ( Z .+ Y ) ) = ( ( X .- Z ) .+ ( Y .- Y ) ) ) | 
						
							| 21 |  | eqid |  |-  ( 0g ` G ) = ( 0g ` G ) | 
						
							| 22 | 1 21 3 | grpsubid |  |-  ( ( G e. Grp /\ Y e. B ) -> ( Y .- Y ) = ( 0g ` G ) ) | 
						
							| 23 | 5 7 22 | syl2anc |  |-  ( ( G e. Abel /\ ( X e. B /\ Y e. B ) /\ ( Z e. B /\ W e. B ) ) -> ( Y .- Y ) = ( 0g ` G ) ) | 
						
							| 24 | 23 | oveq2d |  |-  ( ( G e. Abel /\ ( X e. B /\ Y e. B ) /\ ( Z e. B /\ W e. B ) ) -> ( ( X .- Z ) .+ ( Y .- Y ) ) = ( ( X .- Z ) .+ ( 0g ` G ) ) ) | 
						
							| 25 | 1 3 | grpsubcl |  |-  ( ( G e. Grp /\ X e. B /\ Z e. B ) -> ( X .- Z ) e. B ) | 
						
							| 26 | 5 6 10 25 | syl3anc |  |-  ( ( G e. Abel /\ ( X e. B /\ Y e. B ) /\ ( Z e. B /\ W e. B ) ) -> ( X .- Z ) e. B ) | 
						
							| 27 | 1 2 21 | grprid |  |-  ( ( G e. Grp /\ ( X .- Z ) e. B ) -> ( ( X .- Z ) .+ ( 0g ` G ) ) = ( X .- Z ) ) | 
						
							| 28 | 5 26 27 | syl2anc |  |-  ( ( G e. Abel /\ ( X e. B /\ Y e. B ) /\ ( Z e. B /\ W e. B ) ) -> ( ( X .- Z ) .+ ( 0g ` G ) ) = ( X .- Z ) ) | 
						
							| 29 | 20 24 28 | 3eqtrd |  |-  ( ( G e. Abel /\ ( X e. B /\ Y e. B ) /\ ( Z e. B /\ W e. B ) ) -> ( ( X .+ Y ) .- ( Z .+ Y ) ) = ( X .- Z ) ) | 
						
							| 30 | 1 2 3 | ablsub4 |  |-  ( ( G e. Abel /\ ( Z e. B /\ W e. B ) /\ ( Z e. B /\ Y e. B ) ) -> ( ( Z .+ W ) .- ( Z .+ Y ) ) = ( ( Z .- Z ) .+ ( W .- Y ) ) ) | 
						
							| 31 | 18 10 11 10 7 30 | syl122anc |  |-  ( ( G e. Abel /\ ( X e. B /\ Y e. B ) /\ ( Z e. B /\ W e. B ) ) -> ( ( Z .+ W ) .- ( Z .+ Y ) ) = ( ( Z .- Z ) .+ ( W .- Y ) ) ) | 
						
							| 32 | 1 21 3 | grpsubid |  |-  ( ( G e. Grp /\ Z e. B ) -> ( Z .- Z ) = ( 0g ` G ) ) | 
						
							| 33 | 5 10 32 | syl2anc |  |-  ( ( G e. Abel /\ ( X e. B /\ Y e. B ) /\ ( Z e. B /\ W e. B ) ) -> ( Z .- Z ) = ( 0g ` G ) ) | 
						
							| 34 | 33 | oveq1d |  |-  ( ( G e. Abel /\ ( X e. B /\ Y e. B ) /\ ( Z e. B /\ W e. B ) ) -> ( ( Z .- Z ) .+ ( W .- Y ) ) = ( ( 0g ` G ) .+ ( W .- Y ) ) ) | 
						
							| 35 | 1 3 | grpsubcl |  |-  ( ( G e. Grp /\ W e. B /\ Y e. B ) -> ( W .- Y ) e. B ) | 
						
							| 36 | 5 11 7 35 | syl3anc |  |-  ( ( G e. Abel /\ ( X e. B /\ Y e. B ) /\ ( Z e. B /\ W e. B ) ) -> ( W .- Y ) e. B ) | 
						
							| 37 | 1 2 21 | grplid |  |-  ( ( G e. Grp /\ ( W .- Y ) e. B ) -> ( ( 0g ` G ) .+ ( W .- Y ) ) = ( W .- Y ) ) | 
						
							| 38 | 5 36 37 | syl2anc |  |-  ( ( G e. Abel /\ ( X e. B /\ Y e. B ) /\ ( Z e. B /\ W e. B ) ) -> ( ( 0g ` G ) .+ ( W .- Y ) ) = ( W .- Y ) ) | 
						
							| 39 | 31 34 38 | 3eqtrd |  |-  ( ( G e. Abel /\ ( X e. B /\ Y e. B ) /\ ( Z e. B /\ W e. B ) ) -> ( ( Z .+ W ) .- ( Z .+ Y ) ) = ( W .- Y ) ) | 
						
							| 40 | 29 39 | eqeq12d |  |-  ( ( G e. Abel /\ ( X e. B /\ Y e. B ) /\ ( Z e. B /\ W e. B ) ) -> ( ( ( X .+ Y ) .- ( Z .+ Y ) ) = ( ( Z .+ W ) .- ( Z .+ Y ) ) <-> ( X .- Z ) = ( W .- Y ) ) ) | 
						
							| 41 | 17 40 | bitr3d |  |-  ( ( G e. Abel /\ ( X e. B /\ Y e. B ) /\ ( Z e. B /\ W e. B ) ) -> ( ( X .+ Y ) = ( Z .+ W ) <-> ( X .- Z ) = ( W .- Y ) ) ) |