Description: An Abelian group operation is commutative. (Contributed by NM, 26-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ablcom.b | |- B = ( Base ` G ) |
|
| ablcom.p | |- .+ = ( +g ` G ) |
||
| Assertion | ablcom | |- ( ( G e. Abel /\ X e. B /\ Y e. B ) -> ( X .+ Y ) = ( Y .+ X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablcom.b | |- B = ( Base ` G ) |
|
| 2 | ablcom.p | |- .+ = ( +g ` G ) |
|
| 3 | ablcmn | |- ( G e. Abel -> G e. CMnd ) |
|
| 4 | 1 2 | cmncom | |- ( ( G e. CMnd /\ X e. B /\ Y e. B ) -> ( X .+ Y ) = ( Y .+ X ) ) |
| 5 | 3 4 | syl3an1 | |- ( ( G e. Abel /\ X e. B /\ Y e. B ) -> ( X .+ Y ) = ( Y .+ X ) ) |