Step |
Hyp |
Ref |
Expression |
1 |
|
ablfac.b |
|- B = ( Base ` G ) |
2 |
|
ablfac.c |
|- C = { r e. ( SubGrp ` G ) | ( G |`s r ) e. ( CycGrp i^i ran pGrp ) } |
3 |
|
ablfac.1 |
|- ( ph -> G e. Abel ) |
4 |
|
ablfac.2 |
|- ( ph -> B e. Fin ) |
5 |
|
ablgrp |
|- ( G e. Abel -> G e. Grp ) |
6 |
1
|
subgid |
|- ( G e. Grp -> B e. ( SubGrp ` G ) ) |
7 |
|
eqid |
|- ( od ` G ) = ( od ` G ) |
8 |
|
eqid |
|- { w e. Prime | w || ( # ` B ) } = { w e. Prime | w || ( # ` B ) } |
9 |
|
eqid |
|- ( p e. { w e. Prime | w || ( # ` B ) } |-> { x e. B | ( ( od ` G ) ` x ) || ( p ^ ( p pCnt ( # ` B ) ) ) } ) = ( p e. { w e. Prime | w || ( # ` B ) } |-> { x e. B | ( ( od ` G ) ` x ) || ( p ^ ( p pCnt ( # ` B ) ) ) } ) |
10 |
|
eqid |
|- ( g e. ( SubGrp ` G ) |-> { s e. Word C | ( G dom DProd s /\ ( G DProd s ) = g ) } ) = ( g e. ( SubGrp ` G ) |-> { s e. Word C | ( G dom DProd s /\ ( G DProd s ) = g ) } ) |
11 |
1 2 3 4 7 8 9 10
|
ablfaclem1 |
|- ( B e. ( SubGrp ` G ) -> ( ( g e. ( SubGrp ` G ) |-> { s e. Word C | ( G dom DProd s /\ ( G DProd s ) = g ) } ) ` B ) = { s e. Word C | ( G dom DProd s /\ ( G DProd s ) = B ) } ) |
12 |
3 5 6 11
|
4syl |
|- ( ph -> ( ( g e. ( SubGrp ` G ) |-> { s e. Word C | ( G dom DProd s /\ ( G DProd s ) = g ) } ) ` B ) = { s e. Word C | ( G dom DProd s /\ ( G DProd s ) = B ) } ) |
13 |
1 2 3 4 7 8 9 10
|
ablfaclem3 |
|- ( ph -> ( ( g e. ( SubGrp ` G ) |-> { s e. Word C | ( G dom DProd s /\ ( G DProd s ) = g ) } ) ` B ) =/= (/) ) |
14 |
12 13
|
eqnetrrd |
|- ( ph -> { s e. Word C | ( G dom DProd s /\ ( G DProd s ) = B ) } =/= (/) ) |
15 |
|
rabn0 |
|- ( { s e. Word C | ( G dom DProd s /\ ( G DProd s ) = B ) } =/= (/) <-> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = B ) ) |
16 |
14 15
|
sylib |
|- ( ph -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = B ) ) |