| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ablfac1.b | 
							 |-  B = ( Base ` G )  | 
						
						
							| 2 | 
							
								
							 | 
							ablfac1.o | 
							 |-  O = ( od ` G )  | 
						
						
							| 3 | 
							
								
							 | 
							ablfac1.s | 
							 |-  S = ( p e. A |-> { x e. B | ( O ` x ) || ( p ^ ( p pCnt ( # ` B ) ) ) } ) | 
						
						
							| 4 | 
							
								
							 | 
							ablfac1.g | 
							 |-  ( ph -> G e. Abel )  | 
						
						
							| 5 | 
							
								
							 | 
							ablfac1.f | 
							 |-  ( ph -> B e. Fin )  | 
						
						
							| 6 | 
							
								
							 | 
							ablfac1.1 | 
							 |-  ( ph -> A C_ Prime )  | 
						
						
							| 7 | 
							
								
							 | 
							id | 
							 |-  ( p = P -> p = P )  | 
						
						
							| 8 | 
							
								
							 | 
							oveq1 | 
							 |-  ( p = P -> ( p pCnt ( # ` B ) ) = ( P pCnt ( # ` B ) ) )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							oveq12d | 
							 |-  ( p = P -> ( p ^ ( p pCnt ( # ` B ) ) ) = ( P ^ ( P pCnt ( # ` B ) ) ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							breq2d | 
							 |-  ( p = P -> ( ( O ` x ) || ( p ^ ( p pCnt ( # ` B ) ) ) <-> ( O ` x ) || ( P ^ ( P pCnt ( # ` B ) ) ) ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							rabbidv | 
							 |-  ( p = P -> { x e. B | ( O ` x ) || ( p ^ ( p pCnt ( # ` B ) ) ) } = { x e. B | ( O ` x ) || ( P ^ ( P pCnt ( # ` B ) ) ) } ) | 
						
						
							| 12 | 
							
								1
							 | 
							fvexi | 
							 |-  B e. _V  | 
						
						
							| 13 | 
							
								12
							 | 
							rabex | 
							 |-  { x e. B | ( O ` x ) || ( p ^ ( p pCnt ( # ` B ) ) ) } e. _V | 
						
						
							| 14 | 
							
								11 3 13
							 | 
							fvmpt3i | 
							 |-  ( P e. A -> ( S ` P ) = { x e. B | ( O ` x ) || ( P ^ ( P pCnt ( # ` B ) ) ) } ) | 
						
						
							| 15 | 
							
								14
							 | 
							adantl | 
							 |-  ( ( ph /\ P e. A ) -> ( S ` P ) = { x e. B | ( O ` x ) || ( P ^ ( P pCnt ( # ` B ) ) ) } ) | 
						
						
							| 16 | 
							
								15
							 | 
							fveq2d | 
							 |-  ( ( ph /\ P e. A ) -> ( # ` ( S ` P ) ) = ( # ` { x e. B | ( O ` x ) || ( P ^ ( P pCnt ( # ` B ) ) ) } ) ) | 
						
						
							| 17 | 
							
								
							 | 
							eqid | 
							 |-  { x e. B | ( O ` x ) || ( P ^ ( P pCnt ( # ` B ) ) ) } = { x e. B | ( O ` x ) || ( P ^ ( P pCnt ( # ` B ) ) ) } | 
						
						
							| 18 | 
							
								
							 | 
							eqid | 
							 |-  { x e. B | ( O ` x ) || ( ( # ` B ) / ( P ^ ( P pCnt ( # ` B ) ) ) ) } = { x e. B | ( O ` x ) || ( ( # ` B ) / ( P ^ ( P pCnt ( # ` B ) ) ) ) } | 
						
						
							| 19 | 
							
								4
							 | 
							adantr | 
							 |-  ( ( ph /\ P e. A ) -> G e. Abel )  | 
						
						
							| 20 | 
							
								
							 | 
							eqid | 
							 |-  ( P ^ ( P pCnt ( # ` B ) ) ) = ( P ^ ( P pCnt ( # ` B ) ) )  | 
						
						
							| 21 | 
							
								
							 | 
							eqid | 
							 |-  ( ( # ` B ) / ( P ^ ( P pCnt ( # ` B ) ) ) ) = ( ( # ` B ) / ( P ^ ( P pCnt ( # ` B ) ) ) )  | 
						
						
							| 22 | 
							
								1 2 3 4 5 6 20 21
							 | 
							ablfac1lem | 
							 |-  ( ( ph /\ P e. A ) -> ( ( ( P ^ ( P pCnt ( # ` B ) ) ) e. NN /\ ( ( # ` B ) / ( P ^ ( P pCnt ( # ` B ) ) ) ) e. NN ) /\ ( ( P ^ ( P pCnt ( # ` B ) ) ) gcd ( ( # ` B ) / ( P ^ ( P pCnt ( # ` B ) ) ) ) ) = 1 /\ ( # ` B ) = ( ( P ^ ( P pCnt ( # ` B ) ) ) x. ( ( # ` B ) / ( P ^ ( P pCnt ( # ` B ) ) ) ) ) ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							simp1d | 
							 |-  ( ( ph /\ P e. A ) -> ( ( P ^ ( P pCnt ( # ` B ) ) ) e. NN /\ ( ( # ` B ) / ( P ^ ( P pCnt ( # ` B ) ) ) ) e. NN ) )  | 
						
						
							| 24 | 
							
								23
							 | 
							simpld | 
							 |-  ( ( ph /\ P e. A ) -> ( P ^ ( P pCnt ( # ` B ) ) ) e. NN )  | 
						
						
							| 25 | 
							
								23
							 | 
							simprd | 
							 |-  ( ( ph /\ P e. A ) -> ( ( # ` B ) / ( P ^ ( P pCnt ( # ` B ) ) ) ) e. NN )  | 
						
						
							| 26 | 
							
								22
							 | 
							simp2d | 
							 |-  ( ( ph /\ P e. A ) -> ( ( P ^ ( P pCnt ( # ` B ) ) ) gcd ( ( # ` B ) / ( P ^ ( P pCnt ( # ` B ) ) ) ) ) = 1 )  | 
						
						
							| 27 | 
							
								22
							 | 
							simp3d | 
							 |-  ( ( ph /\ P e. A ) -> ( # ` B ) = ( ( P ^ ( P pCnt ( # ` B ) ) ) x. ( ( # ` B ) / ( P ^ ( P pCnt ( # ` B ) ) ) ) ) )  | 
						
						
							| 28 | 
							
								1 2 17 18 19 24 25 26 27
							 | 
							ablfacrp2 | 
							 |-  ( ( ph /\ P e. A ) -> ( ( # ` { x e. B | ( O ` x ) || ( P ^ ( P pCnt ( # ` B ) ) ) } ) = ( P ^ ( P pCnt ( # ` B ) ) ) /\ ( # ` { x e. B | ( O ` x ) || ( ( # ` B ) / ( P ^ ( P pCnt ( # ` B ) ) ) ) } ) = ( ( # ` B ) / ( P ^ ( P pCnt ( # ` B ) ) ) ) ) ) | 
						
						
							| 29 | 
							
								28
							 | 
							simpld | 
							 |-  ( ( ph /\ P e. A ) -> ( # ` { x e. B | ( O ` x ) || ( P ^ ( P pCnt ( # ` B ) ) ) } ) = ( P ^ ( P pCnt ( # ` B ) ) ) ) | 
						
						
							| 30 | 
							
								16 29
							 | 
							eqtrd | 
							 |-  ( ( ph /\ P e. A ) -> ( # ` ( S ` P ) ) = ( P ^ ( P pCnt ( # ` B ) ) ) )  |