Step |
Hyp |
Ref |
Expression |
1 |
|
ablfac1.b |
|- B = ( Base ` G ) |
2 |
|
ablfac1.o |
|- O = ( od ` G ) |
3 |
|
ablfac1.s |
|- S = ( p e. A |-> { x e. B | ( O ` x ) || ( p ^ ( p pCnt ( # ` B ) ) ) } ) |
4 |
|
ablfac1.g |
|- ( ph -> G e. Abel ) |
5 |
|
ablfac1.f |
|- ( ph -> B e. Fin ) |
6 |
|
ablfac1.1 |
|- ( ph -> A C_ Prime ) |
7 |
|
eqid |
|- ( Cntz ` G ) = ( Cntz ` G ) |
8 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
9 |
|
eqid |
|- ( mrCls ` ( SubGrp ` G ) ) = ( mrCls ` ( SubGrp ` G ) ) |
10 |
|
ablgrp |
|- ( G e. Abel -> G e. Grp ) |
11 |
4 10
|
syl |
|- ( ph -> G e. Grp ) |
12 |
|
prmex |
|- Prime e. _V |
13 |
12
|
ssex |
|- ( A C_ Prime -> A e. _V ) |
14 |
6 13
|
syl |
|- ( ph -> A e. _V ) |
15 |
4
|
adantr |
|- ( ( ph /\ p e. A ) -> G e. Abel ) |
16 |
6
|
sselda |
|- ( ( ph /\ p e. A ) -> p e. Prime ) |
17 |
|
prmnn |
|- ( p e. Prime -> p e. NN ) |
18 |
16 17
|
syl |
|- ( ( ph /\ p e. A ) -> p e. NN ) |
19 |
1
|
grpbn0 |
|- ( G e. Grp -> B =/= (/) ) |
20 |
11 19
|
syl |
|- ( ph -> B =/= (/) ) |
21 |
|
hashnncl |
|- ( B e. Fin -> ( ( # ` B ) e. NN <-> B =/= (/) ) ) |
22 |
5 21
|
syl |
|- ( ph -> ( ( # ` B ) e. NN <-> B =/= (/) ) ) |
23 |
20 22
|
mpbird |
|- ( ph -> ( # ` B ) e. NN ) |
24 |
23
|
adantr |
|- ( ( ph /\ p e. A ) -> ( # ` B ) e. NN ) |
25 |
16 24
|
pccld |
|- ( ( ph /\ p e. A ) -> ( p pCnt ( # ` B ) ) e. NN0 ) |
26 |
18 25
|
nnexpcld |
|- ( ( ph /\ p e. A ) -> ( p ^ ( p pCnt ( # ` B ) ) ) e. NN ) |
27 |
26
|
nnzd |
|- ( ( ph /\ p e. A ) -> ( p ^ ( p pCnt ( # ` B ) ) ) e. ZZ ) |
28 |
2 1
|
oddvdssubg |
|- ( ( G e. Abel /\ ( p ^ ( p pCnt ( # ` B ) ) ) e. ZZ ) -> { x e. B | ( O ` x ) || ( p ^ ( p pCnt ( # ` B ) ) ) } e. ( SubGrp ` G ) ) |
29 |
15 27 28
|
syl2anc |
|- ( ( ph /\ p e. A ) -> { x e. B | ( O ` x ) || ( p ^ ( p pCnt ( # ` B ) ) ) } e. ( SubGrp ` G ) ) |
30 |
29 3
|
fmptd |
|- ( ph -> S : A --> ( SubGrp ` G ) ) |
31 |
4
|
adantr |
|- ( ( ph /\ ( a e. A /\ b e. A /\ a =/= b ) ) -> G e. Abel ) |
32 |
30
|
adantr |
|- ( ( ph /\ ( a e. A /\ b e. A /\ a =/= b ) ) -> S : A --> ( SubGrp ` G ) ) |
33 |
|
simpr1 |
|- ( ( ph /\ ( a e. A /\ b e. A /\ a =/= b ) ) -> a e. A ) |
34 |
32 33
|
ffvelrnd |
|- ( ( ph /\ ( a e. A /\ b e. A /\ a =/= b ) ) -> ( S ` a ) e. ( SubGrp ` G ) ) |
35 |
|
simpr2 |
|- ( ( ph /\ ( a e. A /\ b e. A /\ a =/= b ) ) -> b e. A ) |
36 |
32 35
|
ffvelrnd |
|- ( ( ph /\ ( a e. A /\ b e. A /\ a =/= b ) ) -> ( S ` b ) e. ( SubGrp ` G ) ) |
37 |
7 31 34 36
|
ablcntzd |
|- ( ( ph /\ ( a e. A /\ b e. A /\ a =/= b ) ) -> ( S ` a ) C_ ( ( Cntz ` G ) ` ( S ` b ) ) ) |
38 |
|
id |
|- ( p = a -> p = a ) |
39 |
|
oveq1 |
|- ( p = a -> ( p pCnt ( # ` B ) ) = ( a pCnt ( # ` B ) ) ) |
40 |
38 39
|
oveq12d |
|- ( p = a -> ( p ^ ( p pCnt ( # ` B ) ) ) = ( a ^ ( a pCnt ( # ` B ) ) ) ) |
41 |
40
|
breq2d |
|- ( p = a -> ( ( O ` x ) || ( p ^ ( p pCnt ( # ` B ) ) ) <-> ( O ` x ) || ( a ^ ( a pCnt ( # ` B ) ) ) ) ) |
42 |
41
|
rabbidv |
|- ( p = a -> { x e. B | ( O ` x ) || ( p ^ ( p pCnt ( # ` B ) ) ) } = { x e. B | ( O ` x ) || ( a ^ ( a pCnt ( # ` B ) ) ) } ) |
43 |
1
|
fvexi |
|- B e. _V |
44 |
43
|
rabex |
|- { x e. B | ( O ` x ) || ( p ^ ( p pCnt ( # ` B ) ) ) } e. _V |
45 |
42 3 44
|
fvmpt3i |
|- ( a e. A -> ( S ` a ) = { x e. B | ( O ` x ) || ( a ^ ( a pCnt ( # ` B ) ) ) } ) |
46 |
45
|
adantl |
|- ( ( ph /\ a e. A ) -> ( S ` a ) = { x e. B | ( O ` x ) || ( a ^ ( a pCnt ( # ` B ) ) ) } ) |
47 |
|
eqimss |
|- ( ( S ` a ) = { x e. B | ( O ` x ) || ( a ^ ( a pCnt ( # ` B ) ) ) } -> ( S ` a ) C_ { x e. B | ( O ` x ) || ( a ^ ( a pCnt ( # ` B ) ) ) } ) |
48 |
46 47
|
syl |
|- ( ( ph /\ a e. A ) -> ( S ` a ) C_ { x e. B | ( O ` x ) || ( a ^ ( a pCnt ( # ` B ) ) ) } ) |
49 |
4
|
adantr |
|- ( ( ph /\ a e. A ) -> G e. Abel ) |
50 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
51 |
50
|
subgacs |
|- ( G e. Grp -> ( SubGrp ` G ) e. ( ACS ` ( Base ` G ) ) ) |
52 |
|
acsmre |
|- ( ( SubGrp ` G ) e. ( ACS ` ( Base ` G ) ) -> ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) ) |
53 |
49 10 51 52
|
4syl |
|- ( ( ph /\ a e. A ) -> ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) ) |
54 |
|
df-ima |
|- ( S " ( A \ { a } ) ) = ran ( S |` ( A \ { a } ) ) |
55 |
6
|
sselda |
|- ( ( ph /\ a e. A ) -> a e. Prime ) |
56 |
55
|
ad2antrr |
|- ( ( ( ( ph /\ a e. A ) /\ p e. ( A \ { a } ) ) /\ x e. B ) -> a e. Prime ) |
57 |
23
|
ad3antrrr |
|- ( ( ( ( ph /\ a e. A ) /\ p e. ( A \ { a } ) ) /\ x e. B ) -> ( # ` B ) e. NN ) |
58 |
|
pcdvds |
|- ( ( a e. Prime /\ ( # ` B ) e. NN ) -> ( a ^ ( a pCnt ( # ` B ) ) ) || ( # ` B ) ) |
59 |
56 57 58
|
syl2anc |
|- ( ( ( ( ph /\ a e. A ) /\ p e. ( A \ { a } ) ) /\ x e. B ) -> ( a ^ ( a pCnt ( # ` B ) ) ) || ( # ` B ) ) |
60 |
6
|
ad3antrrr |
|- ( ( ( ( ph /\ a e. A ) /\ p e. ( A \ { a } ) ) /\ x e. B ) -> A C_ Prime ) |
61 |
|
eldifi |
|- ( p e. ( A \ { a } ) -> p e. A ) |
62 |
61
|
ad2antlr |
|- ( ( ( ( ph /\ a e. A ) /\ p e. ( A \ { a } ) ) /\ x e. B ) -> p e. A ) |
63 |
60 62
|
sseldd |
|- ( ( ( ( ph /\ a e. A ) /\ p e. ( A \ { a } ) ) /\ x e. B ) -> p e. Prime ) |
64 |
|
pcdvds |
|- ( ( p e. Prime /\ ( # ` B ) e. NN ) -> ( p ^ ( p pCnt ( # ` B ) ) ) || ( # ` B ) ) |
65 |
63 57 64
|
syl2anc |
|- ( ( ( ( ph /\ a e. A ) /\ p e. ( A \ { a } ) ) /\ x e. B ) -> ( p ^ ( p pCnt ( # ` B ) ) ) || ( # ` B ) ) |
66 |
|
eqid |
|- ( a ^ ( a pCnt ( # ` B ) ) ) = ( a ^ ( a pCnt ( # ` B ) ) ) |
67 |
|
eqid |
|- ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) = ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) |
68 |
1 2 3 4 5 6 66 67
|
ablfac1lem |
|- ( ( ph /\ a e. A ) -> ( ( ( a ^ ( a pCnt ( # ` B ) ) ) e. NN /\ ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) e. NN ) /\ ( ( a ^ ( a pCnt ( # ` B ) ) ) gcd ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) ) = 1 /\ ( # ` B ) = ( ( a ^ ( a pCnt ( # ` B ) ) ) x. ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) ) ) ) |
69 |
68
|
simp1d |
|- ( ( ph /\ a e. A ) -> ( ( a ^ ( a pCnt ( # ` B ) ) ) e. NN /\ ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) e. NN ) ) |
70 |
69
|
simpld |
|- ( ( ph /\ a e. A ) -> ( a ^ ( a pCnt ( # ` B ) ) ) e. NN ) |
71 |
70
|
ad2antrr |
|- ( ( ( ( ph /\ a e. A ) /\ p e. ( A \ { a } ) ) /\ x e. B ) -> ( a ^ ( a pCnt ( # ` B ) ) ) e. NN ) |
72 |
71
|
nnzd |
|- ( ( ( ( ph /\ a e. A ) /\ p e. ( A \ { a } ) ) /\ x e. B ) -> ( a ^ ( a pCnt ( # ` B ) ) ) e. ZZ ) |
73 |
63 17
|
syl |
|- ( ( ( ( ph /\ a e. A ) /\ p e. ( A \ { a } ) ) /\ x e. B ) -> p e. NN ) |
74 |
63 57
|
pccld |
|- ( ( ( ( ph /\ a e. A ) /\ p e. ( A \ { a } ) ) /\ x e. B ) -> ( p pCnt ( # ` B ) ) e. NN0 ) |
75 |
73 74
|
nnexpcld |
|- ( ( ( ( ph /\ a e. A ) /\ p e. ( A \ { a } ) ) /\ x e. B ) -> ( p ^ ( p pCnt ( # ` B ) ) ) e. NN ) |
76 |
75
|
nnzd |
|- ( ( ( ( ph /\ a e. A ) /\ p e. ( A \ { a } ) ) /\ x e. B ) -> ( p ^ ( p pCnt ( # ` B ) ) ) e. ZZ ) |
77 |
57
|
nnzd |
|- ( ( ( ( ph /\ a e. A ) /\ p e. ( A \ { a } ) ) /\ x e. B ) -> ( # ` B ) e. ZZ ) |
78 |
|
eldifsni |
|- ( p e. ( A \ { a } ) -> p =/= a ) |
79 |
78
|
ad2antlr |
|- ( ( ( ( ph /\ a e. A ) /\ p e. ( A \ { a } ) ) /\ x e. B ) -> p =/= a ) |
80 |
79
|
necomd |
|- ( ( ( ( ph /\ a e. A ) /\ p e. ( A \ { a } ) ) /\ x e. B ) -> a =/= p ) |
81 |
|
prmrp |
|- ( ( a e. Prime /\ p e. Prime ) -> ( ( a gcd p ) = 1 <-> a =/= p ) ) |
82 |
56 63 81
|
syl2anc |
|- ( ( ( ( ph /\ a e. A ) /\ p e. ( A \ { a } ) ) /\ x e. B ) -> ( ( a gcd p ) = 1 <-> a =/= p ) ) |
83 |
80 82
|
mpbird |
|- ( ( ( ( ph /\ a e. A ) /\ p e. ( A \ { a } ) ) /\ x e. B ) -> ( a gcd p ) = 1 ) |
84 |
|
prmz |
|- ( a e. Prime -> a e. ZZ ) |
85 |
56 84
|
syl |
|- ( ( ( ( ph /\ a e. A ) /\ p e. ( A \ { a } ) ) /\ x e. B ) -> a e. ZZ ) |
86 |
|
prmz |
|- ( p e. Prime -> p e. ZZ ) |
87 |
63 86
|
syl |
|- ( ( ( ( ph /\ a e. A ) /\ p e. ( A \ { a } ) ) /\ x e. B ) -> p e. ZZ ) |
88 |
56 57
|
pccld |
|- ( ( ( ( ph /\ a e. A ) /\ p e. ( A \ { a } ) ) /\ x e. B ) -> ( a pCnt ( # ` B ) ) e. NN0 ) |
89 |
|
rpexp12i |
|- ( ( a e. ZZ /\ p e. ZZ /\ ( ( a pCnt ( # ` B ) ) e. NN0 /\ ( p pCnt ( # ` B ) ) e. NN0 ) ) -> ( ( a gcd p ) = 1 -> ( ( a ^ ( a pCnt ( # ` B ) ) ) gcd ( p ^ ( p pCnt ( # ` B ) ) ) ) = 1 ) ) |
90 |
85 87 88 74 89
|
syl112anc |
|- ( ( ( ( ph /\ a e. A ) /\ p e. ( A \ { a } ) ) /\ x e. B ) -> ( ( a gcd p ) = 1 -> ( ( a ^ ( a pCnt ( # ` B ) ) ) gcd ( p ^ ( p pCnt ( # ` B ) ) ) ) = 1 ) ) |
91 |
83 90
|
mpd |
|- ( ( ( ( ph /\ a e. A ) /\ p e. ( A \ { a } ) ) /\ x e. B ) -> ( ( a ^ ( a pCnt ( # ` B ) ) ) gcd ( p ^ ( p pCnt ( # ` B ) ) ) ) = 1 ) |
92 |
|
coprmdvds2 |
|- ( ( ( ( a ^ ( a pCnt ( # ` B ) ) ) e. ZZ /\ ( p ^ ( p pCnt ( # ` B ) ) ) e. ZZ /\ ( # ` B ) e. ZZ ) /\ ( ( a ^ ( a pCnt ( # ` B ) ) ) gcd ( p ^ ( p pCnt ( # ` B ) ) ) ) = 1 ) -> ( ( ( a ^ ( a pCnt ( # ` B ) ) ) || ( # ` B ) /\ ( p ^ ( p pCnt ( # ` B ) ) ) || ( # ` B ) ) -> ( ( a ^ ( a pCnt ( # ` B ) ) ) x. ( p ^ ( p pCnt ( # ` B ) ) ) ) || ( # ` B ) ) ) |
93 |
72 76 77 91 92
|
syl31anc |
|- ( ( ( ( ph /\ a e. A ) /\ p e. ( A \ { a } ) ) /\ x e. B ) -> ( ( ( a ^ ( a pCnt ( # ` B ) ) ) || ( # ` B ) /\ ( p ^ ( p pCnt ( # ` B ) ) ) || ( # ` B ) ) -> ( ( a ^ ( a pCnt ( # ` B ) ) ) x. ( p ^ ( p pCnt ( # ` B ) ) ) ) || ( # ` B ) ) ) |
94 |
59 65 93
|
mp2and |
|- ( ( ( ( ph /\ a e. A ) /\ p e. ( A \ { a } ) ) /\ x e. B ) -> ( ( a ^ ( a pCnt ( # ` B ) ) ) x. ( p ^ ( p pCnt ( # ` B ) ) ) ) || ( # ` B ) ) |
95 |
68
|
simp3d |
|- ( ( ph /\ a e. A ) -> ( # ` B ) = ( ( a ^ ( a pCnt ( # ` B ) ) ) x. ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) ) ) |
96 |
95
|
ad2antrr |
|- ( ( ( ( ph /\ a e. A ) /\ p e. ( A \ { a } ) ) /\ x e. B ) -> ( # ` B ) = ( ( a ^ ( a pCnt ( # ` B ) ) ) x. ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) ) ) |
97 |
94 96
|
breqtrd |
|- ( ( ( ( ph /\ a e. A ) /\ p e. ( A \ { a } ) ) /\ x e. B ) -> ( ( a ^ ( a pCnt ( # ` B ) ) ) x. ( p ^ ( p pCnt ( # ` B ) ) ) ) || ( ( a ^ ( a pCnt ( # ` B ) ) ) x. ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) ) ) |
98 |
69
|
simprd |
|- ( ( ph /\ a e. A ) -> ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) e. NN ) |
99 |
98
|
ad2antrr |
|- ( ( ( ( ph /\ a e. A ) /\ p e. ( A \ { a } ) ) /\ x e. B ) -> ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) e. NN ) |
100 |
99
|
nnzd |
|- ( ( ( ( ph /\ a e. A ) /\ p e. ( A \ { a } ) ) /\ x e. B ) -> ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) e. ZZ ) |
101 |
71
|
nnne0d |
|- ( ( ( ( ph /\ a e. A ) /\ p e. ( A \ { a } ) ) /\ x e. B ) -> ( a ^ ( a pCnt ( # ` B ) ) ) =/= 0 ) |
102 |
|
dvdscmulr |
|- ( ( ( p ^ ( p pCnt ( # ` B ) ) ) e. ZZ /\ ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) e. ZZ /\ ( ( a ^ ( a pCnt ( # ` B ) ) ) e. ZZ /\ ( a ^ ( a pCnt ( # ` B ) ) ) =/= 0 ) ) -> ( ( ( a ^ ( a pCnt ( # ` B ) ) ) x. ( p ^ ( p pCnt ( # ` B ) ) ) ) || ( ( a ^ ( a pCnt ( # ` B ) ) ) x. ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) ) <-> ( p ^ ( p pCnt ( # ` B ) ) ) || ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) ) ) |
103 |
76 100 72 101 102
|
syl112anc |
|- ( ( ( ( ph /\ a e. A ) /\ p e. ( A \ { a } ) ) /\ x e. B ) -> ( ( ( a ^ ( a pCnt ( # ` B ) ) ) x. ( p ^ ( p pCnt ( # ` B ) ) ) ) || ( ( a ^ ( a pCnt ( # ` B ) ) ) x. ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) ) <-> ( p ^ ( p pCnt ( # ` B ) ) ) || ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) ) ) |
104 |
97 103
|
mpbid |
|- ( ( ( ( ph /\ a e. A ) /\ p e. ( A \ { a } ) ) /\ x e. B ) -> ( p ^ ( p pCnt ( # ` B ) ) ) || ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) ) |
105 |
1 2
|
odcl |
|- ( x e. B -> ( O ` x ) e. NN0 ) |
106 |
105
|
adantl |
|- ( ( ( ( ph /\ a e. A ) /\ p e. ( A \ { a } ) ) /\ x e. B ) -> ( O ` x ) e. NN0 ) |
107 |
106
|
nn0zd |
|- ( ( ( ( ph /\ a e. A ) /\ p e. ( A \ { a } ) ) /\ x e. B ) -> ( O ` x ) e. ZZ ) |
108 |
|
dvdstr |
|- ( ( ( O ` x ) e. ZZ /\ ( p ^ ( p pCnt ( # ` B ) ) ) e. ZZ /\ ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) e. ZZ ) -> ( ( ( O ` x ) || ( p ^ ( p pCnt ( # ` B ) ) ) /\ ( p ^ ( p pCnt ( # ` B ) ) ) || ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) ) -> ( O ` x ) || ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) ) ) |
109 |
107 76 100 108
|
syl3anc |
|- ( ( ( ( ph /\ a e. A ) /\ p e. ( A \ { a } ) ) /\ x e. B ) -> ( ( ( O ` x ) || ( p ^ ( p pCnt ( # ` B ) ) ) /\ ( p ^ ( p pCnt ( # ` B ) ) ) || ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) ) -> ( O ` x ) || ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) ) ) |
110 |
104 109
|
mpan2d |
|- ( ( ( ( ph /\ a e. A ) /\ p e. ( A \ { a } ) ) /\ x e. B ) -> ( ( O ` x ) || ( p ^ ( p pCnt ( # ` B ) ) ) -> ( O ` x ) || ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) ) ) |
111 |
110
|
ss2rabdv |
|- ( ( ( ph /\ a e. A ) /\ p e. ( A \ { a } ) ) -> { x e. B | ( O ` x ) || ( p ^ ( p pCnt ( # ` B ) ) ) } C_ { x e. B | ( O ` x ) || ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) } ) |
112 |
44
|
elpw |
|- ( { x e. B | ( O ` x ) || ( p ^ ( p pCnt ( # ` B ) ) ) } e. ~P { x e. B | ( O ` x ) || ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) } <-> { x e. B | ( O ` x ) || ( p ^ ( p pCnt ( # ` B ) ) ) } C_ { x e. B | ( O ` x ) || ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) } ) |
113 |
111 112
|
sylibr |
|- ( ( ( ph /\ a e. A ) /\ p e. ( A \ { a } ) ) -> { x e. B | ( O ` x ) || ( p ^ ( p pCnt ( # ` B ) ) ) } e. ~P { x e. B | ( O ` x ) || ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) } ) |
114 |
3
|
reseq1i |
|- ( S |` ( A \ { a } ) ) = ( ( p e. A |-> { x e. B | ( O ` x ) || ( p ^ ( p pCnt ( # ` B ) ) ) } ) |` ( A \ { a } ) ) |
115 |
|
difss |
|- ( A \ { a } ) C_ A |
116 |
|
resmpt |
|- ( ( A \ { a } ) C_ A -> ( ( p e. A |-> { x e. B | ( O ` x ) || ( p ^ ( p pCnt ( # ` B ) ) ) } ) |` ( A \ { a } ) ) = ( p e. ( A \ { a } ) |-> { x e. B | ( O ` x ) || ( p ^ ( p pCnt ( # ` B ) ) ) } ) ) |
117 |
115 116
|
ax-mp |
|- ( ( p e. A |-> { x e. B | ( O ` x ) || ( p ^ ( p pCnt ( # ` B ) ) ) } ) |` ( A \ { a } ) ) = ( p e. ( A \ { a } ) |-> { x e. B | ( O ` x ) || ( p ^ ( p pCnt ( # ` B ) ) ) } ) |
118 |
114 117
|
eqtri |
|- ( S |` ( A \ { a } ) ) = ( p e. ( A \ { a } ) |-> { x e. B | ( O ` x ) || ( p ^ ( p pCnt ( # ` B ) ) ) } ) |
119 |
113 118
|
fmptd |
|- ( ( ph /\ a e. A ) -> ( S |` ( A \ { a } ) ) : ( A \ { a } ) --> ~P { x e. B | ( O ` x ) || ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) } ) |
120 |
119
|
frnd |
|- ( ( ph /\ a e. A ) -> ran ( S |` ( A \ { a } ) ) C_ ~P { x e. B | ( O ` x ) || ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) } ) |
121 |
54 120
|
eqsstrid |
|- ( ( ph /\ a e. A ) -> ( S " ( A \ { a } ) ) C_ ~P { x e. B | ( O ` x ) || ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) } ) |
122 |
|
sspwuni |
|- ( ( S " ( A \ { a } ) ) C_ ~P { x e. B | ( O ` x ) || ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) } <-> U. ( S " ( A \ { a } ) ) C_ { x e. B | ( O ` x ) || ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) } ) |
123 |
121 122
|
sylib |
|- ( ( ph /\ a e. A ) -> U. ( S " ( A \ { a } ) ) C_ { x e. B | ( O ` x ) || ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) } ) |
124 |
98
|
nnzd |
|- ( ( ph /\ a e. A ) -> ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) e. ZZ ) |
125 |
2 1
|
oddvdssubg |
|- ( ( G e. Abel /\ ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) e. ZZ ) -> { x e. B | ( O ` x ) || ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) } e. ( SubGrp ` G ) ) |
126 |
49 124 125
|
syl2anc |
|- ( ( ph /\ a e. A ) -> { x e. B | ( O ` x ) || ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) } e. ( SubGrp ` G ) ) |
127 |
9
|
mrcsscl |
|- ( ( ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) /\ U. ( S " ( A \ { a } ) ) C_ { x e. B | ( O ` x ) || ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) } /\ { x e. B | ( O ` x ) || ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) } e. ( SubGrp ` G ) ) -> ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( A \ { a } ) ) ) C_ { x e. B | ( O ` x ) || ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) } ) |
128 |
53 123 126 127
|
syl3anc |
|- ( ( ph /\ a e. A ) -> ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( A \ { a } ) ) ) C_ { x e. B | ( O ` x ) || ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) } ) |
129 |
|
ss2in |
|- ( ( ( S ` a ) C_ { x e. B | ( O ` x ) || ( a ^ ( a pCnt ( # ` B ) ) ) } /\ ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( A \ { a } ) ) ) C_ { x e. B | ( O ` x ) || ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) } ) -> ( ( S ` a ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( A \ { a } ) ) ) ) C_ ( { x e. B | ( O ` x ) || ( a ^ ( a pCnt ( # ` B ) ) ) } i^i { x e. B | ( O ` x ) || ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) } ) ) |
130 |
48 128 129
|
syl2anc |
|- ( ( ph /\ a e. A ) -> ( ( S ` a ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( A \ { a } ) ) ) ) C_ ( { x e. B | ( O ` x ) || ( a ^ ( a pCnt ( # ` B ) ) ) } i^i { x e. B | ( O ` x ) || ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) } ) ) |
131 |
|
eqid |
|- { x e. B | ( O ` x ) || ( a ^ ( a pCnt ( # ` B ) ) ) } = { x e. B | ( O ` x ) || ( a ^ ( a pCnt ( # ` B ) ) ) } |
132 |
|
eqid |
|- { x e. B | ( O ` x ) || ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) } = { x e. B | ( O ` x ) || ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) } |
133 |
68
|
simp2d |
|- ( ( ph /\ a e. A ) -> ( ( a ^ ( a pCnt ( # ` B ) ) ) gcd ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) ) = 1 ) |
134 |
|
eqid |
|- ( LSSum ` G ) = ( LSSum ` G ) |
135 |
1 2 131 132 49 70 98 133 95 8 134
|
ablfacrp |
|- ( ( ph /\ a e. A ) -> ( ( { x e. B | ( O ` x ) || ( a ^ ( a pCnt ( # ` B ) ) ) } i^i { x e. B | ( O ` x ) || ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) } ) = { ( 0g ` G ) } /\ ( { x e. B | ( O ` x ) || ( a ^ ( a pCnt ( # ` B ) ) ) } ( LSSum ` G ) { x e. B | ( O ` x ) || ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) } ) = B ) ) |
136 |
135
|
simpld |
|- ( ( ph /\ a e. A ) -> ( { x e. B | ( O ` x ) || ( a ^ ( a pCnt ( # ` B ) ) ) } i^i { x e. B | ( O ` x ) || ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) } ) = { ( 0g ` G ) } ) |
137 |
130 136
|
sseqtrd |
|- ( ( ph /\ a e. A ) -> ( ( S ` a ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( A \ { a } ) ) ) ) C_ { ( 0g ` G ) } ) |
138 |
7 8 9 11 14 30 37 137
|
dmdprdd |
|- ( ph -> G dom DProd S ) |