| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ablfac1.b | 
							 |-  B = ( Base ` G )  | 
						
						
							| 2 | 
							
								
							 | 
							ablfac1.o | 
							 |-  O = ( od ` G )  | 
						
						
							| 3 | 
							
								
							 | 
							ablfac1.s | 
							 |-  S = ( p e. A |-> { x e. B | ( O ` x ) || ( p ^ ( p pCnt ( # ` B ) ) ) } ) | 
						
						
							| 4 | 
							
								
							 | 
							ablfac1.g | 
							 |-  ( ph -> G e. Abel )  | 
						
						
							| 5 | 
							
								
							 | 
							ablfac1.f | 
							 |-  ( ph -> B e. Fin )  | 
						
						
							| 6 | 
							
								
							 | 
							ablfac1.1 | 
							 |-  ( ph -> A C_ Prime )  | 
						
						
							| 7 | 
							
								
							 | 
							eqid | 
							 |-  ( Cntz ` G ) = ( Cntz ` G )  | 
						
						
							| 8 | 
							
								
							 | 
							eqid | 
							 |-  ( 0g ` G ) = ( 0g ` G )  | 
						
						
							| 9 | 
							
								
							 | 
							eqid | 
							 |-  ( mrCls ` ( SubGrp ` G ) ) = ( mrCls ` ( SubGrp ` G ) )  | 
						
						
							| 10 | 
							
								
							 | 
							ablgrp | 
							 |-  ( G e. Abel -> G e. Grp )  | 
						
						
							| 11 | 
							
								4 10
							 | 
							syl | 
							 |-  ( ph -> G e. Grp )  | 
						
						
							| 12 | 
							
								
							 | 
							prmex | 
							 |-  Prime e. _V  | 
						
						
							| 13 | 
							
								12
							 | 
							ssex | 
							 |-  ( A C_ Prime -> A e. _V )  | 
						
						
							| 14 | 
							
								6 13
							 | 
							syl | 
							 |-  ( ph -> A e. _V )  | 
						
						
							| 15 | 
							
								4
							 | 
							adantr | 
							 |-  ( ( ph /\ p e. A ) -> G e. Abel )  | 
						
						
							| 16 | 
							
								6
							 | 
							sselda | 
							 |-  ( ( ph /\ p e. A ) -> p e. Prime )  | 
						
						
							| 17 | 
							
								
							 | 
							prmnn | 
							 |-  ( p e. Prime -> p e. NN )  | 
						
						
							| 18 | 
							
								16 17
							 | 
							syl | 
							 |-  ( ( ph /\ p e. A ) -> p e. NN )  | 
						
						
							| 19 | 
							
								1
							 | 
							grpbn0 | 
							 |-  ( G e. Grp -> B =/= (/) )  | 
						
						
							| 20 | 
							
								11 19
							 | 
							syl | 
							 |-  ( ph -> B =/= (/) )  | 
						
						
							| 21 | 
							
								
							 | 
							hashnncl | 
							 |-  ( B e. Fin -> ( ( # ` B ) e. NN <-> B =/= (/) ) )  | 
						
						
							| 22 | 
							
								5 21
							 | 
							syl | 
							 |-  ( ph -> ( ( # ` B ) e. NN <-> B =/= (/) ) )  | 
						
						
							| 23 | 
							
								20 22
							 | 
							mpbird | 
							 |-  ( ph -> ( # ` B ) e. NN )  | 
						
						
							| 24 | 
							
								23
							 | 
							adantr | 
							 |-  ( ( ph /\ p e. A ) -> ( # ` B ) e. NN )  | 
						
						
							| 25 | 
							
								16 24
							 | 
							pccld | 
							 |-  ( ( ph /\ p e. A ) -> ( p pCnt ( # ` B ) ) e. NN0 )  | 
						
						
							| 26 | 
							
								18 25
							 | 
							nnexpcld | 
							 |-  ( ( ph /\ p e. A ) -> ( p ^ ( p pCnt ( # ` B ) ) ) e. NN )  | 
						
						
							| 27 | 
							
								26
							 | 
							nnzd | 
							 |-  ( ( ph /\ p e. A ) -> ( p ^ ( p pCnt ( # ` B ) ) ) e. ZZ )  | 
						
						
							| 28 | 
							
								2 1
							 | 
							oddvdssubg | 
							 |-  ( ( G e. Abel /\ ( p ^ ( p pCnt ( # ` B ) ) ) e. ZZ ) -> { x e. B | ( O ` x ) || ( p ^ ( p pCnt ( # ` B ) ) ) } e. ( SubGrp ` G ) ) | 
						
						
							| 29 | 
							
								15 27 28
							 | 
							syl2anc | 
							 |-  ( ( ph /\ p e. A ) -> { x e. B | ( O ` x ) || ( p ^ ( p pCnt ( # ` B ) ) ) } e. ( SubGrp ` G ) ) | 
						
						
							| 30 | 
							
								29 3
							 | 
							fmptd | 
							 |-  ( ph -> S : A --> ( SubGrp ` G ) )  | 
						
						
							| 31 | 
							
								4
							 | 
							adantr | 
							 |-  ( ( ph /\ ( a e. A /\ b e. A /\ a =/= b ) ) -> G e. Abel )  | 
						
						
							| 32 | 
							
								30
							 | 
							adantr | 
							 |-  ( ( ph /\ ( a e. A /\ b e. A /\ a =/= b ) ) -> S : A --> ( SubGrp ` G ) )  | 
						
						
							| 33 | 
							
								
							 | 
							simpr1 | 
							 |-  ( ( ph /\ ( a e. A /\ b e. A /\ a =/= b ) ) -> a e. A )  | 
						
						
							| 34 | 
							
								32 33
							 | 
							ffvelcdmd | 
							 |-  ( ( ph /\ ( a e. A /\ b e. A /\ a =/= b ) ) -> ( S ` a ) e. ( SubGrp ` G ) )  | 
						
						
							| 35 | 
							
								
							 | 
							simpr2 | 
							 |-  ( ( ph /\ ( a e. A /\ b e. A /\ a =/= b ) ) -> b e. A )  | 
						
						
							| 36 | 
							
								32 35
							 | 
							ffvelcdmd | 
							 |-  ( ( ph /\ ( a e. A /\ b e. A /\ a =/= b ) ) -> ( S ` b ) e. ( SubGrp ` G ) )  | 
						
						
							| 37 | 
							
								7 31 34 36
							 | 
							ablcntzd | 
							 |-  ( ( ph /\ ( a e. A /\ b e. A /\ a =/= b ) ) -> ( S ` a ) C_ ( ( Cntz ` G ) ` ( S ` b ) ) )  | 
						
						
							| 38 | 
							
								
							 | 
							id | 
							 |-  ( p = a -> p = a )  | 
						
						
							| 39 | 
							
								
							 | 
							oveq1 | 
							 |-  ( p = a -> ( p pCnt ( # ` B ) ) = ( a pCnt ( # ` B ) ) )  | 
						
						
							| 40 | 
							
								38 39
							 | 
							oveq12d | 
							 |-  ( p = a -> ( p ^ ( p pCnt ( # ` B ) ) ) = ( a ^ ( a pCnt ( # ` B ) ) ) )  | 
						
						
							| 41 | 
							
								40
							 | 
							breq2d | 
							 |-  ( p = a -> ( ( O ` x ) || ( p ^ ( p pCnt ( # ` B ) ) ) <-> ( O ` x ) || ( a ^ ( a pCnt ( # ` B ) ) ) ) )  | 
						
						
							| 42 | 
							
								41
							 | 
							rabbidv | 
							 |-  ( p = a -> { x e. B | ( O ` x ) || ( p ^ ( p pCnt ( # ` B ) ) ) } = { x e. B | ( O ` x ) || ( a ^ ( a pCnt ( # ` B ) ) ) } ) | 
						
						
							| 43 | 
							
								1
							 | 
							fvexi | 
							 |-  B e. _V  | 
						
						
							| 44 | 
							
								43
							 | 
							rabex | 
							 |-  { x e. B | ( O ` x ) || ( p ^ ( p pCnt ( # ` B ) ) ) } e. _V | 
						
						
							| 45 | 
							
								42 3 44
							 | 
							fvmpt3i | 
							 |-  ( a e. A -> ( S ` a ) = { x e. B | ( O ` x ) || ( a ^ ( a pCnt ( # ` B ) ) ) } ) | 
						
						
							| 46 | 
							
								45
							 | 
							adantl | 
							 |-  ( ( ph /\ a e. A ) -> ( S ` a ) = { x e. B | ( O ` x ) || ( a ^ ( a pCnt ( # ` B ) ) ) } ) | 
						
						
							| 47 | 
							
								
							 | 
							eqimss | 
							 |-  ( ( S ` a ) = { x e. B | ( O ` x ) || ( a ^ ( a pCnt ( # ` B ) ) ) } -> ( S ` a ) C_ { x e. B | ( O ` x ) || ( a ^ ( a pCnt ( # ` B ) ) ) } ) | 
						
						
							| 48 | 
							
								46 47
							 | 
							syl | 
							 |-  ( ( ph /\ a e. A ) -> ( S ` a ) C_ { x e. B | ( O ` x ) || ( a ^ ( a pCnt ( # ` B ) ) ) } ) | 
						
						
							| 49 | 
							
								4
							 | 
							adantr | 
							 |-  ( ( ph /\ a e. A ) -> G e. Abel )  | 
						
						
							| 50 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` G ) = ( Base ` G )  | 
						
						
							| 51 | 
							
								50
							 | 
							subgacs | 
							 |-  ( G e. Grp -> ( SubGrp ` G ) e. ( ACS ` ( Base ` G ) ) )  | 
						
						
							| 52 | 
							
								
							 | 
							acsmre | 
							 |-  ( ( SubGrp ` G ) e. ( ACS ` ( Base ` G ) ) -> ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) )  | 
						
						
							| 53 | 
							
								49 10 51 52
							 | 
							4syl | 
							 |-  ( ( ph /\ a e. A ) -> ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) )  | 
						
						
							| 54 | 
							
								
							 | 
							df-ima | 
							 |-  ( S " ( A \ { a } ) ) = ran ( S |` ( A \ { a } ) ) | 
						
						
							| 55 | 
							
								6
							 | 
							sselda | 
							 |-  ( ( ph /\ a e. A ) -> a e. Prime )  | 
						
						
							| 56 | 
							
								55
							 | 
							ad2antrr | 
							 |-  ( ( ( ( ph /\ a e. A ) /\ p e. ( A \ { a } ) ) /\ x e. B ) -> a e. Prime ) | 
						
						
							| 57 | 
							
								23
							 | 
							ad3antrrr | 
							 |-  ( ( ( ( ph /\ a e. A ) /\ p e. ( A \ { a } ) ) /\ x e. B ) -> ( # ` B ) e. NN ) | 
						
						
							| 58 | 
							
								
							 | 
							pcdvds | 
							 |-  ( ( a e. Prime /\ ( # ` B ) e. NN ) -> ( a ^ ( a pCnt ( # ` B ) ) ) || ( # ` B ) )  | 
						
						
							| 59 | 
							
								56 57 58
							 | 
							syl2anc | 
							 |-  ( ( ( ( ph /\ a e. A ) /\ p e. ( A \ { a } ) ) /\ x e. B ) -> ( a ^ ( a pCnt ( # ` B ) ) ) || ( # ` B ) ) | 
						
						
							| 60 | 
							
								6
							 | 
							ad3antrrr | 
							 |-  ( ( ( ( ph /\ a e. A ) /\ p e. ( A \ { a } ) ) /\ x e. B ) -> A C_ Prime ) | 
						
						
							| 61 | 
							
								
							 | 
							eldifi | 
							 |-  ( p e. ( A \ { a } ) -> p e. A ) | 
						
						
							| 62 | 
							
								61
							 | 
							ad2antlr | 
							 |-  ( ( ( ( ph /\ a e. A ) /\ p e. ( A \ { a } ) ) /\ x e. B ) -> p e. A ) | 
						
						
							| 63 | 
							
								60 62
							 | 
							sseldd | 
							 |-  ( ( ( ( ph /\ a e. A ) /\ p e. ( A \ { a } ) ) /\ x e. B ) -> p e. Prime ) | 
						
						
							| 64 | 
							
								
							 | 
							pcdvds | 
							 |-  ( ( p e. Prime /\ ( # ` B ) e. NN ) -> ( p ^ ( p pCnt ( # ` B ) ) ) || ( # ` B ) )  | 
						
						
							| 65 | 
							
								63 57 64
							 | 
							syl2anc | 
							 |-  ( ( ( ( ph /\ a e. A ) /\ p e. ( A \ { a } ) ) /\ x e. B ) -> ( p ^ ( p pCnt ( # ` B ) ) ) || ( # ` B ) ) | 
						
						
							| 66 | 
							
								
							 | 
							eqid | 
							 |-  ( a ^ ( a pCnt ( # ` B ) ) ) = ( a ^ ( a pCnt ( # ` B ) ) )  | 
						
						
							| 67 | 
							
								
							 | 
							eqid | 
							 |-  ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) = ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) )  | 
						
						
							| 68 | 
							
								1 2 3 4 5 6 66 67
							 | 
							ablfac1lem | 
							 |-  ( ( ph /\ a e. A ) -> ( ( ( a ^ ( a pCnt ( # ` B ) ) ) e. NN /\ ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) e. NN ) /\ ( ( a ^ ( a pCnt ( # ` B ) ) ) gcd ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) ) = 1 /\ ( # ` B ) = ( ( a ^ ( a pCnt ( # ` B ) ) ) x. ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) ) ) )  | 
						
						
							| 69 | 
							
								68
							 | 
							simp1d | 
							 |-  ( ( ph /\ a e. A ) -> ( ( a ^ ( a pCnt ( # ` B ) ) ) e. NN /\ ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) e. NN ) )  | 
						
						
							| 70 | 
							
								69
							 | 
							simpld | 
							 |-  ( ( ph /\ a e. A ) -> ( a ^ ( a pCnt ( # ` B ) ) ) e. NN )  | 
						
						
							| 71 | 
							
								70
							 | 
							ad2antrr | 
							 |-  ( ( ( ( ph /\ a e. A ) /\ p e. ( A \ { a } ) ) /\ x e. B ) -> ( a ^ ( a pCnt ( # ` B ) ) ) e. NN ) | 
						
						
							| 72 | 
							
								71
							 | 
							nnzd | 
							 |-  ( ( ( ( ph /\ a e. A ) /\ p e. ( A \ { a } ) ) /\ x e. B ) -> ( a ^ ( a pCnt ( # ` B ) ) ) e. ZZ ) | 
						
						
							| 73 | 
							
								63 17
							 | 
							syl | 
							 |-  ( ( ( ( ph /\ a e. A ) /\ p e. ( A \ { a } ) ) /\ x e. B ) -> p e. NN ) | 
						
						
							| 74 | 
							
								63 57
							 | 
							pccld | 
							 |-  ( ( ( ( ph /\ a e. A ) /\ p e. ( A \ { a } ) ) /\ x e. B ) -> ( p pCnt ( # ` B ) ) e. NN0 ) | 
						
						
							| 75 | 
							
								73 74
							 | 
							nnexpcld | 
							 |-  ( ( ( ( ph /\ a e. A ) /\ p e. ( A \ { a } ) ) /\ x e. B ) -> ( p ^ ( p pCnt ( # ` B ) ) ) e. NN ) | 
						
						
							| 76 | 
							
								75
							 | 
							nnzd | 
							 |-  ( ( ( ( ph /\ a e. A ) /\ p e. ( A \ { a } ) ) /\ x e. B ) -> ( p ^ ( p pCnt ( # ` B ) ) ) e. ZZ ) | 
						
						
							| 77 | 
							
								57
							 | 
							nnzd | 
							 |-  ( ( ( ( ph /\ a e. A ) /\ p e. ( A \ { a } ) ) /\ x e. B ) -> ( # ` B ) e. ZZ ) | 
						
						
							| 78 | 
							
								
							 | 
							eldifsni | 
							 |-  ( p e. ( A \ { a } ) -> p =/= a ) | 
						
						
							| 79 | 
							
								78
							 | 
							ad2antlr | 
							 |-  ( ( ( ( ph /\ a e. A ) /\ p e. ( A \ { a } ) ) /\ x e. B ) -> p =/= a ) | 
						
						
							| 80 | 
							
								79
							 | 
							necomd | 
							 |-  ( ( ( ( ph /\ a e. A ) /\ p e. ( A \ { a } ) ) /\ x e. B ) -> a =/= p ) | 
						
						
							| 81 | 
							
								
							 | 
							prmrp | 
							 |-  ( ( a e. Prime /\ p e. Prime ) -> ( ( a gcd p ) = 1 <-> a =/= p ) )  | 
						
						
							| 82 | 
							
								56 63 81
							 | 
							syl2anc | 
							 |-  ( ( ( ( ph /\ a e. A ) /\ p e. ( A \ { a } ) ) /\ x e. B ) -> ( ( a gcd p ) = 1 <-> a =/= p ) ) | 
						
						
							| 83 | 
							
								80 82
							 | 
							mpbird | 
							 |-  ( ( ( ( ph /\ a e. A ) /\ p e. ( A \ { a } ) ) /\ x e. B ) -> ( a gcd p ) = 1 ) | 
						
						
							| 84 | 
							
								
							 | 
							prmz | 
							 |-  ( a e. Prime -> a e. ZZ )  | 
						
						
							| 85 | 
							
								56 84
							 | 
							syl | 
							 |-  ( ( ( ( ph /\ a e. A ) /\ p e. ( A \ { a } ) ) /\ x e. B ) -> a e. ZZ ) | 
						
						
							| 86 | 
							
								
							 | 
							prmz | 
							 |-  ( p e. Prime -> p e. ZZ )  | 
						
						
							| 87 | 
							
								63 86
							 | 
							syl | 
							 |-  ( ( ( ( ph /\ a e. A ) /\ p e. ( A \ { a } ) ) /\ x e. B ) -> p e. ZZ ) | 
						
						
							| 88 | 
							
								56 57
							 | 
							pccld | 
							 |-  ( ( ( ( ph /\ a e. A ) /\ p e. ( A \ { a } ) ) /\ x e. B ) -> ( a pCnt ( # ` B ) ) e. NN0 ) | 
						
						
							| 89 | 
							
								
							 | 
							rpexp12i | 
							 |-  ( ( a e. ZZ /\ p e. ZZ /\ ( ( a pCnt ( # ` B ) ) e. NN0 /\ ( p pCnt ( # ` B ) ) e. NN0 ) ) -> ( ( a gcd p ) = 1 -> ( ( a ^ ( a pCnt ( # ` B ) ) ) gcd ( p ^ ( p pCnt ( # ` B ) ) ) ) = 1 ) )  | 
						
						
							| 90 | 
							
								85 87 88 74 89
							 | 
							syl112anc | 
							 |-  ( ( ( ( ph /\ a e. A ) /\ p e. ( A \ { a } ) ) /\ x e. B ) -> ( ( a gcd p ) = 1 -> ( ( a ^ ( a pCnt ( # ` B ) ) ) gcd ( p ^ ( p pCnt ( # ` B ) ) ) ) = 1 ) ) | 
						
						
							| 91 | 
							
								83 90
							 | 
							mpd | 
							 |-  ( ( ( ( ph /\ a e. A ) /\ p e. ( A \ { a } ) ) /\ x e. B ) -> ( ( a ^ ( a pCnt ( # ` B ) ) ) gcd ( p ^ ( p pCnt ( # ` B ) ) ) ) = 1 ) | 
						
						
							| 92 | 
							
								
							 | 
							coprmdvds2 | 
							 |-  ( ( ( ( a ^ ( a pCnt ( # ` B ) ) ) e. ZZ /\ ( p ^ ( p pCnt ( # ` B ) ) ) e. ZZ /\ ( # ` B ) e. ZZ ) /\ ( ( a ^ ( a pCnt ( # ` B ) ) ) gcd ( p ^ ( p pCnt ( # ` B ) ) ) ) = 1 ) -> ( ( ( a ^ ( a pCnt ( # ` B ) ) ) || ( # ` B ) /\ ( p ^ ( p pCnt ( # ` B ) ) ) || ( # ` B ) ) -> ( ( a ^ ( a pCnt ( # ` B ) ) ) x. ( p ^ ( p pCnt ( # ` B ) ) ) ) || ( # ` B ) ) )  | 
						
						
							| 93 | 
							
								72 76 77 91 92
							 | 
							syl31anc | 
							 |-  ( ( ( ( ph /\ a e. A ) /\ p e. ( A \ { a } ) ) /\ x e. B ) -> ( ( ( a ^ ( a pCnt ( # ` B ) ) ) || ( # ` B ) /\ ( p ^ ( p pCnt ( # ` B ) ) ) || ( # ` B ) ) -> ( ( a ^ ( a pCnt ( # ` B ) ) ) x. ( p ^ ( p pCnt ( # ` B ) ) ) ) || ( # ` B ) ) ) | 
						
						
							| 94 | 
							
								59 65 93
							 | 
							mp2and | 
							 |-  ( ( ( ( ph /\ a e. A ) /\ p e. ( A \ { a } ) ) /\ x e. B ) -> ( ( a ^ ( a pCnt ( # ` B ) ) ) x. ( p ^ ( p pCnt ( # ` B ) ) ) ) || ( # ` B ) ) | 
						
						
							| 95 | 
							
								68
							 | 
							simp3d | 
							 |-  ( ( ph /\ a e. A ) -> ( # ` B ) = ( ( a ^ ( a pCnt ( # ` B ) ) ) x. ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) ) )  | 
						
						
							| 96 | 
							
								95
							 | 
							ad2antrr | 
							 |-  ( ( ( ( ph /\ a e. A ) /\ p e. ( A \ { a } ) ) /\ x e. B ) -> ( # ` B ) = ( ( a ^ ( a pCnt ( # ` B ) ) ) x. ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) ) ) | 
						
						
							| 97 | 
							
								94 96
							 | 
							breqtrd | 
							 |-  ( ( ( ( ph /\ a e. A ) /\ p e. ( A \ { a } ) ) /\ x e. B ) -> ( ( a ^ ( a pCnt ( # ` B ) ) ) x. ( p ^ ( p pCnt ( # ` B ) ) ) ) || ( ( a ^ ( a pCnt ( # ` B ) ) ) x. ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) ) ) | 
						
						
							| 98 | 
							
								69
							 | 
							simprd | 
							 |-  ( ( ph /\ a e. A ) -> ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) e. NN )  | 
						
						
							| 99 | 
							
								98
							 | 
							ad2antrr | 
							 |-  ( ( ( ( ph /\ a e. A ) /\ p e. ( A \ { a } ) ) /\ x e. B ) -> ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) e. NN ) | 
						
						
							| 100 | 
							
								99
							 | 
							nnzd | 
							 |-  ( ( ( ( ph /\ a e. A ) /\ p e. ( A \ { a } ) ) /\ x e. B ) -> ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) e. ZZ ) | 
						
						
							| 101 | 
							
								71
							 | 
							nnne0d | 
							 |-  ( ( ( ( ph /\ a e. A ) /\ p e. ( A \ { a } ) ) /\ x e. B ) -> ( a ^ ( a pCnt ( # ` B ) ) ) =/= 0 ) | 
						
						
							| 102 | 
							
								
							 | 
							dvdscmulr | 
							 |-  ( ( ( p ^ ( p pCnt ( # ` B ) ) ) e. ZZ /\ ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) e. ZZ /\ ( ( a ^ ( a pCnt ( # ` B ) ) ) e. ZZ /\ ( a ^ ( a pCnt ( # ` B ) ) ) =/= 0 ) ) -> ( ( ( a ^ ( a pCnt ( # ` B ) ) ) x. ( p ^ ( p pCnt ( # ` B ) ) ) ) || ( ( a ^ ( a pCnt ( # ` B ) ) ) x. ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) ) <-> ( p ^ ( p pCnt ( # ` B ) ) ) || ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) ) )  | 
						
						
							| 103 | 
							
								76 100 72 101 102
							 | 
							syl112anc | 
							 |-  ( ( ( ( ph /\ a e. A ) /\ p e. ( A \ { a } ) ) /\ x e. B ) -> ( ( ( a ^ ( a pCnt ( # ` B ) ) ) x. ( p ^ ( p pCnt ( # ` B ) ) ) ) || ( ( a ^ ( a pCnt ( # ` B ) ) ) x. ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) ) <-> ( p ^ ( p pCnt ( # ` B ) ) ) || ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) ) ) | 
						
						
							| 104 | 
							
								97 103
							 | 
							mpbid | 
							 |-  ( ( ( ( ph /\ a e. A ) /\ p e. ( A \ { a } ) ) /\ x e. B ) -> ( p ^ ( p pCnt ( # ` B ) ) ) || ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) ) | 
						
						
							| 105 | 
							
								1 2
							 | 
							odcl | 
							 |-  ( x e. B -> ( O ` x ) e. NN0 )  | 
						
						
							| 106 | 
							
								105
							 | 
							adantl | 
							 |-  ( ( ( ( ph /\ a e. A ) /\ p e. ( A \ { a } ) ) /\ x e. B ) -> ( O ` x ) e. NN0 ) | 
						
						
							| 107 | 
							
								106
							 | 
							nn0zd | 
							 |-  ( ( ( ( ph /\ a e. A ) /\ p e. ( A \ { a } ) ) /\ x e. B ) -> ( O ` x ) e. ZZ ) | 
						
						
							| 108 | 
							
								
							 | 
							dvdstr | 
							 |-  ( ( ( O ` x ) e. ZZ /\ ( p ^ ( p pCnt ( # ` B ) ) ) e. ZZ /\ ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) e. ZZ ) -> ( ( ( O ` x ) || ( p ^ ( p pCnt ( # ` B ) ) ) /\ ( p ^ ( p pCnt ( # ` B ) ) ) || ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) ) -> ( O ` x ) || ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) ) )  | 
						
						
							| 109 | 
							
								107 76 100 108
							 | 
							syl3anc | 
							 |-  ( ( ( ( ph /\ a e. A ) /\ p e. ( A \ { a } ) ) /\ x e. B ) -> ( ( ( O ` x ) || ( p ^ ( p pCnt ( # ` B ) ) ) /\ ( p ^ ( p pCnt ( # ` B ) ) ) || ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) ) -> ( O ` x ) || ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) ) ) | 
						
						
							| 110 | 
							
								104 109
							 | 
							mpan2d | 
							 |-  ( ( ( ( ph /\ a e. A ) /\ p e. ( A \ { a } ) ) /\ x e. B ) -> ( ( O ` x ) || ( p ^ ( p pCnt ( # ` B ) ) ) -> ( O ` x ) || ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) ) ) | 
						
						
							| 111 | 
							
								110
							 | 
							ss2rabdv | 
							 |-  ( ( ( ph /\ a e. A ) /\ p e. ( A \ { a } ) ) -> { x e. B | ( O ` x ) || ( p ^ ( p pCnt ( # ` B ) ) ) } C_ { x e. B | ( O ` x ) || ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) } ) | 
						
						
							| 112 | 
							
								44
							 | 
							elpw | 
							 |-  ( { x e. B | ( O ` x ) || ( p ^ ( p pCnt ( # ` B ) ) ) } e. ~P { x e. B | ( O ` x ) || ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) } <-> { x e. B | ( O ` x ) || ( p ^ ( p pCnt ( # ` B ) ) ) } C_ { x e. B | ( O ` x ) || ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) } ) | 
						
						
							| 113 | 
							
								111 112
							 | 
							sylibr | 
							 |-  ( ( ( ph /\ a e. A ) /\ p e. ( A \ { a } ) ) -> { x e. B | ( O ` x ) || ( p ^ ( p pCnt ( # ` B ) ) ) } e. ~P { x e. B | ( O ` x ) || ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) } ) | 
						
						
							| 114 | 
							
								3
							 | 
							reseq1i | 
							 |-  ( S |` ( A \ { a } ) ) = ( ( p e. A |-> { x e. B | ( O ` x ) || ( p ^ ( p pCnt ( # ` B ) ) ) } ) |` ( A \ { a } ) ) | 
						
						
							| 115 | 
							
								
							 | 
							difss | 
							 |-  ( A \ { a } ) C_ A | 
						
						
							| 116 | 
							
								
							 | 
							resmpt | 
							 |-  ( ( A \ { a } ) C_ A -> ( ( p e. A |-> { x e. B | ( O ` x ) || ( p ^ ( p pCnt ( # ` B ) ) ) } ) |` ( A \ { a } ) ) = ( p e. ( A \ { a } ) |-> { x e. B | ( O ` x ) || ( p ^ ( p pCnt ( # ` B ) ) ) } ) ) | 
						
						
							| 117 | 
							
								115 116
							 | 
							ax-mp | 
							 |-  ( ( p e. A |-> { x e. B | ( O ` x ) || ( p ^ ( p pCnt ( # ` B ) ) ) } ) |` ( A \ { a } ) ) = ( p e. ( A \ { a } ) |-> { x e. B | ( O ` x ) || ( p ^ ( p pCnt ( # ` B ) ) ) } ) | 
						
						
							| 118 | 
							
								114 117
							 | 
							eqtri | 
							 |-  ( S |` ( A \ { a } ) ) = ( p e. ( A \ { a } ) |-> { x e. B | ( O ` x ) || ( p ^ ( p pCnt ( # ` B ) ) ) } ) | 
						
						
							| 119 | 
							
								113 118
							 | 
							fmptd | 
							 |-  ( ( ph /\ a e. A ) -> ( S |` ( A \ { a } ) ) : ( A \ { a } ) --> ~P { x e. B | ( O ` x ) || ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) } ) | 
						
						
							| 120 | 
							
								119
							 | 
							frnd | 
							 |-  ( ( ph /\ a e. A ) -> ran ( S |` ( A \ { a } ) ) C_ ~P { x e. B | ( O ` x ) || ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) } ) | 
						
						
							| 121 | 
							
								54 120
							 | 
							eqsstrid | 
							 |-  ( ( ph /\ a e. A ) -> ( S " ( A \ { a } ) ) C_ ~P { x e. B | ( O ` x ) || ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) } ) | 
						
						
							| 122 | 
							
								
							 | 
							sspwuni | 
							 |-  ( ( S " ( A \ { a } ) ) C_ ~P { x e. B | ( O ` x ) || ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) } <-> U. ( S " ( A \ { a } ) ) C_ { x e. B | ( O ` x ) || ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) } ) | 
						
						
							| 123 | 
							
								121 122
							 | 
							sylib | 
							 |-  ( ( ph /\ a e. A ) -> U. ( S " ( A \ { a } ) ) C_ { x e. B | ( O ` x ) || ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) } ) | 
						
						
							| 124 | 
							
								98
							 | 
							nnzd | 
							 |-  ( ( ph /\ a e. A ) -> ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) e. ZZ )  | 
						
						
							| 125 | 
							
								2 1
							 | 
							oddvdssubg | 
							 |-  ( ( G e. Abel /\ ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) e. ZZ ) -> { x e. B | ( O ` x ) || ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) } e. ( SubGrp ` G ) ) | 
						
						
							| 126 | 
							
								49 124 125
							 | 
							syl2anc | 
							 |-  ( ( ph /\ a e. A ) -> { x e. B | ( O ` x ) || ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) } e. ( SubGrp ` G ) ) | 
						
						
							| 127 | 
							
								9
							 | 
							mrcsscl | 
							 |-  ( ( ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) /\ U. ( S " ( A \ { a } ) ) C_ { x e. B | ( O ` x ) || ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) } /\ { x e. B | ( O ` x ) || ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) } e. ( SubGrp ` G ) ) -> ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( A \ { a } ) ) ) C_ { x e. B | ( O ` x ) || ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) } ) | 
						
						
							| 128 | 
							
								53 123 126 127
							 | 
							syl3anc | 
							 |-  ( ( ph /\ a e. A ) -> ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( A \ { a } ) ) ) C_ { x e. B | ( O ` x ) || ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) } ) | 
						
						
							| 129 | 
							
								
							 | 
							ss2in | 
							 |-  ( ( ( S ` a ) C_ { x e. B | ( O ` x ) || ( a ^ ( a pCnt ( # ` B ) ) ) } /\ ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( A \ { a } ) ) ) C_ { x e. B | ( O ` x ) || ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) } ) -> ( ( S ` a ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( A \ { a } ) ) ) ) C_ ( { x e. B | ( O ` x ) || ( a ^ ( a pCnt ( # ` B ) ) ) } i^i { x e. B | ( O ` x ) || ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) } ) ) | 
						
						
							| 130 | 
							
								48 128 129
							 | 
							syl2anc | 
							 |-  ( ( ph /\ a e. A ) -> ( ( S ` a ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( A \ { a } ) ) ) ) C_ ( { x e. B | ( O ` x ) || ( a ^ ( a pCnt ( # ` B ) ) ) } i^i { x e. B | ( O ` x ) || ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) } ) ) | 
						
						
							| 131 | 
							
								
							 | 
							eqid | 
							 |-  { x e. B | ( O ` x ) || ( a ^ ( a pCnt ( # ` B ) ) ) } = { x e. B | ( O ` x ) || ( a ^ ( a pCnt ( # ` B ) ) ) } | 
						
						
							| 132 | 
							
								
							 | 
							eqid | 
							 |-  { x e. B | ( O ` x ) || ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) } = { x e. B | ( O ` x ) || ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) } | 
						
						
							| 133 | 
							
								68
							 | 
							simp2d | 
							 |-  ( ( ph /\ a e. A ) -> ( ( a ^ ( a pCnt ( # ` B ) ) ) gcd ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) ) = 1 )  | 
						
						
							| 134 | 
							
								
							 | 
							eqid | 
							 |-  ( LSSum ` G ) = ( LSSum ` G )  | 
						
						
							| 135 | 
							
								1 2 131 132 49 70 98 133 95 8 134
							 | 
							ablfacrp | 
							 |-  ( ( ph /\ a e. A ) -> ( ( { x e. B | ( O ` x ) || ( a ^ ( a pCnt ( # ` B ) ) ) } i^i { x e. B | ( O ` x ) || ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) } ) = { ( 0g ` G ) } /\ ( { x e. B | ( O ` x ) || ( a ^ ( a pCnt ( # ` B ) ) ) } ( LSSum ` G ) { x e. B | ( O ` x ) || ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) } ) = B ) ) | 
						
						
							| 136 | 
							
								135
							 | 
							simpld | 
							 |-  ( ( ph /\ a e. A ) -> ( { x e. B | ( O ` x ) || ( a ^ ( a pCnt ( # ` B ) ) ) } i^i { x e. B | ( O ` x ) || ( ( # ` B ) / ( a ^ ( a pCnt ( # ` B ) ) ) ) } ) = { ( 0g ` G ) } ) | 
						
						
							| 137 | 
							
								130 136
							 | 
							sseqtrd | 
							 |-  ( ( ph /\ a e. A ) -> ( ( S ` a ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( A \ { a } ) ) ) ) C_ { ( 0g ` G ) } ) | 
						
						
							| 138 | 
							
								7 8 9 11 14 30 37 137
							 | 
							dmdprdd | 
							 |-  ( ph -> G dom DProd S )  |