Step |
Hyp |
Ref |
Expression |
1 |
|
ablfac1.b |
|- B = ( Base ` G ) |
2 |
|
ablfac1.o |
|- O = ( od ` G ) |
3 |
|
ablfac1.s |
|- S = ( p e. A |-> { x e. B | ( O ` x ) || ( p ^ ( p pCnt ( # ` B ) ) ) } ) |
4 |
|
ablfac1.g |
|- ( ph -> G e. Abel ) |
5 |
|
ablfac1.f |
|- ( ph -> B e. Fin ) |
6 |
|
ablfac1.1 |
|- ( ph -> A C_ Prime ) |
7 |
|
ablfac1c.d |
|- D = { w e. Prime | w || ( # ` B ) } |
8 |
|
ablfac1.2 |
|- ( ph -> D C_ A ) |
9 |
1
|
dprdssv |
|- ( G DProd S ) C_ B |
10 |
9
|
a1i |
|- ( ph -> ( G DProd S ) C_ B ) |
11 |
|
ssfi |
|- ( ( B e. Fin /\ ( G DProd S ) C_ B ) -> ( G DProd S ) e. Fin ) |
12 |
5 9 11
|
sylancl |
|- ( ph -> ( G DProd S ) e. Fin ) |
13 |
|
hashcl |
|- ( ( G DProd S ) e. Fin -> ( # ` ( G DProd S ) ) e. NN0 ) |
14 |
12 13
|
syl |
|- ( ph -> ( # ` ( G DProd S ) ) e. NN0 ) |
15 |
|
hashcl |
|- ( B e. Fin -> ( # ` B ) e. NN0 ) |
16 |
5 15
|
syl |
|- ( ph -> ( # ` B ) e. NN0 ) |
17 |
1 2 3 4 5 6
|
ablfac1b |
|- ( ph -> G dom DProd S ) |
18 |
|
dprdsubg |
|- ( G dom DProd S -> ( G DProd S ) e. ( SubGrp ` G ) ) |
19 |
17 18
|
syl |
|- ( ph -> ( G DProd S ) e. ( SubGrp ` G ) ) |
20 |
1
|
lagsubg |
|- ( ( ( G DProd S ) e. ( SubGrp ` G ) /\ B e. Fin ) -> ( # ` ( G DProd S ) ) || ( # ` B ) ) |
21 |
19 5 20
|
syl2anc |
|- ( ph -> ( # ` ( G DProd S ) ) || ( # ` B ) ) |
22 |
|
breq1 |
|- ( w = q -> ( w || ( # ` B ) <-> q || ( # ` B ) ) ) |
23 |
22 7
|
elrab2 |
|- ( q e. D <-> ( q e. Prime /\ q || ( # ` B ) ) ) |
24 |
8
|
sseld |
|- ( ph -> ( q e. D -> q e. A ) ) |
25 |
23 24
|
syl5bir |
|- ( ph -> ( ( q e. Prime /\ q || ( # ` B ) ) -> q e. A ) ) |
26 |
25
|
impl |
|- ( ( ( ph /\ q e. Prime ) /\ q || ( # ` B ) ) -> q e. A ) |
27 |
1 2 3 4 5 6
|
ablfac1a |
|- ( ( ph /\ q e. A ) -> ( # ` ( S ` q ) ) = ( q ^ ( q pCnt ( # ` B ) ) ) ) |
28 |
1
|
fvexi |
|- B e. _V |
29 |
28
|
rabex |
|- { x e. B | ( O ` x ) || ( p ^ ( p pCnt ( # ` B ) ) ) } e. _V |
30 |
29 3
|
dmmpti |
|- dom S = A |
31 |
30
|
a1i |
|- ( ph -> dom S = A ) |
32 |
17 31
|
dprdf2 |
|- ( ph -> S : A --> ( SubGrp ` G ) ) |
33 |
32
|
ffvelrnda |
|- ( ( ph /\ q e. A ) -> ( S ` q ) e. ( SubGrp ` G ) ) |
34 |
17
|
adantr |
|- ( ( ph /\ q e. A ) -> G dom DProd S ) |
35 |
30
|
a1i |
|- ( ( ph /\ q e. A ) -> dom S = A ) |
36 |
|
simpr |
|- ( ( ph /\ q e. A ) -> q e. A ) |
37 |
34 35 36
|
dprdub |
|- ( ( ph /\ q e. A ) -> ( S ` q ) C_ ( G DProd S ) ) |
38 |
19
|
adantr |
|- ( ( ph /\ q e. A ) -> ( G DProd S ) e. ( SubGrp ` G ) ) |
39 |
|
eqid |
|- ( G |`s ( G DProd S ) ) = ( G |`s ( G DProd S ) ) |
40 |
39
|
subsubg |
|- ( ( G DProd S ) e. ( SubGrp ` G ) -> ( ( S ` q ) e. ( SubGrp ` ( G |`s ( G DProd S ) ) ) <-> ( ( S ` q ) e. ( SubGrp ` G ) /\ ( S ` q ) C_ ( G DProd S ) ) ) ) |
41 |
38 40
|
syl |
|- ( ( ph /\ q e. A ) -> ( ( S ` q ) e. ( SubGrp ` ( G |`s ( G DProd S ) ) ) <-> ( ( S ` q ) e. ( SubGrp ` G ) /\ ( S ` q ) C_ ( G DProd S ) ) ) ) |
42 |
33 37 41
|
mpbir2and |
|- ( ( ph /\ q e. A ) -> ( S ` q ) e. ( SubGrp ` ( G |`s ( G DProd S ) ) ) ) |
43 |
39
|
subgbas |
|- ( ( G DProd S ) e. ( SubGrp ` G ) -> ( G DProd S ) = ( Base ` ( G |`s ( G DProd S ) ) ) ) |
44 |
38 43
|
syl |
|- ( ( ph /\ q e. A ) -> ( G DProd S ) = ( Base ` ( G |`s ( G DProd S ) ) ) ) |
45 |
12
|
adantr |
|- ( ( ph /\ q e. A ) -> ( G DProd S ) e. Fin ) |
46 |
44 45
|
eqeltrrd |
|- ( ( ph /\ q e. A ) -> ( Base ` ( G |`s ( G DProd S ) ) ) e. Fin ) |
47 |
|
eqid |
|- ( Base ` ( G |`s ( G DProd S ) ) ) = ( Base ` ( G |`s ( G DProd S ) ) ) |
48 |
47
|
lagsubg |
|- ( ( ( S ` q ) e. ( SubGrp ` ( G |`s ( G DProd S ) ) ) /\ ( Base ` ( G |`s ( G DProd S ) ) ) e. Fin ) -> ( # ` ( S ` q ) ) || ( # ` ( Base ` ( G |`s ( G DProd S ) ) ) ) ) |
49 |
42 46 48
|
syl2anc |
|- ( ( ph /\ q e. A ) -> ( # ` ( S ` q ) ) || ( # ` ( Base ` ( G |`s ( G DProd S ) ) ) ) ) |
50 |
44
|
fveq2d |
|- ( ( ph /\ q e. A ) -> ( # ` ( G DProd S ) ) = ( # ` ( Base ` ( G |`s ( G DProd S ) ) ) ) ) |
51 |
49 50
|
breqtrrd |
|- ( ( ph /\ q e. A ) -> ( # ` ( S ` q ) ) || ( # ` ( G DProd S ) ) ) |
52 |
27 51
|
eqbrtrrd |
|- ( ( ph /\ q e. A ) -> ( q ^ ( q pCnt ( # ` B ) ) ) || ( # ` ( G DProd S ) ) ) |
53 |
6
|
sselda |
|- ( ( ph /\ q e. A ) -> q e. Prime ) |
54 |
14
|
nn0zd |
|- ( ph -> ( # ` ( G DProd S ) ) e. ZZ ) |
55 |
54
|
adantr |
|- ( ( ph /\ q e. A ) -> ( # ` ( G DProd S ) ) e. ZZ ) |
56 |
|
simpr |
|- ( ( ph /\ q e. Prime ) -> q e. Prime ) |
57 |
|
ablgrp |
|- ( G e. Abel -> G e. Grp ) |
58 |
1
|
grpbn0 |
|- ( G e. Grp -> B =/= (/) ) |
59 |
4 57 58
|
3syl |
|- ( ph -> B =/= (/) ) |
60 |
|
hashnncl |
|- ( B e. Fin -> ( ( # ` B ) e. NN <-> B =/= (/) ) ) |
61 |
5 60
|
syl |
|- ( ph -> ( ( # ` B ) e. NN <-> B =/= (/) ) ) |
62 |
59 61
|
mpbird |
|- ( ph -> ( # ` B ) e. NN ) |
63 |
62
|
adantr |
|- ( ( ph /\ q e. Prime ) -> ( # ` B ) e. NN ) |
64 |
56 63
|
pccld |
|- ( ( ph /\ q e. Prime ) -> ( q pCnt ( # ` B ) ) e. NN0 ) |
65 |
53 64
|
syldan |
|- ( ( ph /\ q e. A ) -> ( q pCnt ( # ` B ) ) e. NN0 ) |
66 |
|
pcdvdsb |
|- ( ( q e. Prime /\ ( # ` ( G DProd S ) ) e. ZZ /\ ( q pCnt ( # ` B ) ) e. NN0 ) -> ( ( q pCnt ( # ` B ) ) <_ ( q pCnt ( # ` ( G DProd S ) ) ) <-> ( q ^ ( q pCnt ( # ` B ) ) ) || ( # ` ( G DProd S ) ) ) ) |
67 |
53 55 65 66
|
syl3anc |
|- ( ( ph /\ q e. A ) -> ( ( q pCnt ( # ` B ) ) <_ ( q pCnt ( # ` ( G DProd S ) ) ) <-> ( q ^ ( q pCnt ( # ` B ) ) ) || ( # ` ( G DProd S ) ) ) ) |
68 |
52 67
|
mpbird |
|- ( ( ph /\ q e. A ) -> ( q pCnt ( # ` B ) ) <_ ( q pCnt ( # ` ( G DProd S ) ) ) ) |
69 |
68
|
adantlr |
|- ( ( ( ph /\ q e. Prime ) /\ q e. A ) -> ( q pCnt ( # ` B ) ) <_ ( q pCnt ( # ` ( G DProd S ) ) ) ) |
70 |
26 69
|
syldan |
|- ( ( ( ph /\ q e. Prime ) /\ q || ( # ` B ) ) -> ( q pCnt ( # ` B ) ) <_ ( q pCnt ( # ` ( G DProd S ) ) ) ) |
71 |
|
pceq0 |
|- ( ( q e. Prime /\ ( # ` B ) e. NN ) -> ( ( q pCnt ( # ` B ) ) = 0 <-> -. q || ( # ` B ) ) ) |
72 |
56 63 71
|
syl2anc |
|- ( ( ph /\ q e. Prime ) -> ( ( q pCnt ( # ` B ) ) = 0 <-> -. q || ( # ` B ) ) ) |
73 |
72
|
biimpar |
|- ( ( ( ph /\ q e. Prime ) /\ -. q || ( # ` B ) ) -> ( q pCnt ( # ` B ) ) = 0 ) |
74 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
75 |
74
|
subg0cl |
|- ( ( G DProd S ) e. ( SubGrp ` G ) -> ( 0g ` G ) e. ( G DProd S ) ) |
76 |
|
ne0i |
|- ( ( 0g ` G ) e. ( G DProd S ) -> ( G DProd S ) =/= (/) ) |
77 |
19 75 76
|
3syl |
|- ( ph -> ( G DProd S ) =/= (/) ) |
78 |
|
hashnncl |
|- ( ( G DProd S ) e. Fin -> ( ( # ` ( G DProd S ) ) e. NN <-> ( G DProd S ) =/= (/) ) ) |
79 |
12 78
|
syl |
|- ( ph -> ( ( # ` ( G DProd S ) ) e. NN <-> ( G DProd S ) =/= (/) ) ) |
80 |
77 79
|
mpbird |
|- ( ph -> ( # ` ( G DProd S ) ) e. NN ) |
81 |
80
|
adantr |
|- ( ( ph /\ q e. Prime ) -> ( # ` ( G DProd S ) ) e. NN ) |
82 |
56 81
|
pccld |
|- ( ( ph /\ q e. Prime ) -> ( q pCnt ( # ` ( G DProd S ) ) ) e. NN0 ) |
83 |
82
|
nn0ge0d |
|- ( ( ph /\ q e. Prime ) -> 0 <_ ( q pCnt ( # ` ( G DProd S ) ) ) ) |
84 |
83
|
adantr |
|- ( ( ( ph /\ q e. Prime ) /\ -. q || ( # ` B ) ) -> 0 <_ ( q pCnt ( # ` ( G DProd S ) ) ) ) |
85 |
73 84
|
eqbrtrd |
|- ( ( ( ph /\ q e. Prime ) /\ -. q || ( # ` B ) ) -> ( q pCnt ( # ` B ) ) <_ ( q pCnt ( # ` ( G DProd S ) ) ) ) |
86 |
70 85
|
pm2.61dan |
|- ( ( ph /\ q e. Prime ) -> ( q pCnt ( # ` B ) ) <_ ( q pCnt ( # ` ( G DProd S ) ) ) ) |
87 |
86
|
ralrimiva |
|- ( ph -> A. q e. Prime ( q pCnt ( # ` B ) ) <_ ( q pCnt ( # ` ( G DProd S ) ) ) ) |
88 |
16
|
nn0zd |
|- ( ph -> ( # ` B ) e. ZZ ) |
89 |
|
pc2dvds |
|- ( ( ( # ` B ) e. ZZ /\ ( # ` ( G DProd S ) ) e. ZZ ) -> ( ( # ` B ) || ( # ` ( G DProd S ) ) <-> A. q e. Prime ( q pCnt ( # ` B ) ) <_ ( q pCnt ( # ` ( G DProd S ) ) ) ) ) |
90 |
88 54 89
|
syl2anc |
|- ( ph -> ( ( # ` B ) || ( # ` ( G DProd S ) ) <-> A. q e. Prime ( q pCnt ( # ` B ) ) <_ ( q pCnt ( # ` ( G DProd S ) ) ) ) ) |
91 |
87 90
|
mpbird |
|- ( ph -> ( # ` B ) || ( # ` ( G DProd S ) ) ) |
92 |
|
dvdseq |
|- ( ( ( ( # ` ( G DProd S ) ) e. NN0 /\ ( # ` B ) e. NN0 ) /\ ( ( # ` ( G DProd S ) ) || ( # ` B ) /\ ( # ` B ) || ( # ` ( G DProd S ) ) ) ) -> ( # ` ( G DProd S ) ) = ( # ` B ) ) |
93 |
14 16 21 91 92
|
syl22anc |
|- ( ph -> ( # ` ( G DProd S ) ) = ( # ` B ) ) |
94 |
|
hashen |
|- ( ( ( G DProd S ) e. Fin /\ B e. Fin ) -> ( ( # ` ( G DProd S ) ) = ( # ` B ) <-> ( G DProd S ) ~~ B ) ) |
95 |
12 5 94
|
syl2anc |
|- ( ph -> ( ( # ` ( G DProd S ) ) = ( # ` B ) <-> ( G DProd S ) ~~ B ) ) |
96 |
93 95
|
mpbid |
|- ( ph -> ( G DProd S ) ~~ B ) |
97 |
|
fisseneq |
|- ( ( B e. Fin /\ ( G DProd S ) C_ B /\ ( G DProd S ) ~~ B ) -> ( G DProd S ) = B ) |
98 |
5 10 96 97
|
syl3anc |
|- ( ph -> ( G DProd S ) = B ) |