Step |
Hyp |
Ref |
Expression |
1 |
|
ablfac.b |
|- B = ( Base ` G ) |
2 |
|
ablfac.c |
|- C = { r e. ( SubGrp ` G ) | ( G |`s r ) e. ( CycGrp i^i ran pGrp ) } |
3 |
|
ablfac.1 |
|- ( ph -> G e. Abel ) |
4 |
|
ablfac.2 |
|- ( ph -> B e. Fin ) |
5 |
|
ablfac2.m |
|- .x. = ( .g ` G ) |
6 |
|
ablfac2.s |
|- S = ( k e. dom w |-> ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) ) |
7 |
|
wrdf |
|- ( s e. Word C -> s : ( 0 ..^ ( # ` s ) ) --> C ) |
8 |
7
|
ad2antlr |
|- ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) -> s : ( 0 ..^ ( # ` s ) ) --> C ) |
9 |
8
|
fdmd |
|- ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) -> dom s = ( 0 ..^ ( # ` s ) ) ) |
10 |
|
fzofi |
|- ( 0 ..^ ( # ` s ) ) e. Fin |
11 |
9 10
|
eqeltrdi |
|- ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) -> dom s e. Fin ) |
12 |
8
|
ffdmd |
|- ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) -> s : dom s --> C ) |
13 |
12
|
ffvelrnda |
|- ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ k e. dom s ) -> ( s ` k ) e. C ) |
14 |
|
oveq2 |
|- ( r = ( s ` k ) -> ( G |`s r ) = ( G |`s ( s ` k ) ) ) |
15 |
14
|
eleq1d |
|- ( r = ( s ` k ) -> ( ( G |`s r ) e. ( CycGrp i^i ran pGrp ) <-> ( G |`s ( s ` k ) ) e. ( CycGrp i^i ran pGrp ) ) ) |
16 |
15 2
|
elrab2 |
|- ( ( s ` k ) e. C <-> ( ( s ` k ) e. ( SubGrp ` G ) /\ ( G |`s ( s ` k ) ) e. ( CycGrp i^i ran pGrp ) ) ) |
17 |
16
|
simplbi |
|- ( ( s ` k ) e. C -> ( s ` k ) e. ( SubGrp ` G ) ) |
18 |
13 17
|
syl |
|- ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ k e. dom s ) -> ( s ` k ) e. ( SubGrp ` G ) ) |
19 |
1
|
subgss |
|- ( ( s ` k ) e. ( SubGrp ` G ) -> ( s ` k ) C_ B ) |
20 |
18 19
|
syl |
|- ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ k e. dom s ) -> ( s ` k ) C_ B ) |
21 |
16
|
simprbi |
|- ( ( s ` k ) e. C -> ( G |`s ( s ` k ) ) e. ( CycGrp i^i ran pGrp ) ) |
22 |
13 21
|
syl |
|- ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ k e. dom s ) -> ( G |`s ( s ` k ) ) e. ( CycGrp i^i ran pGrp ) ) |
23 |
22
|
elin1d |
|- ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ k e. dom s ) -> ( G |`s ( s ` k ) ) e. CycGrp ) |
24 |
|
eqid |
|- ( Base ` ( G |`s ( s ` k ) ) ) = ( Base ` ( G |`s ( s ` k ) ) ) |
25 |
|
eqid |
|- ( .g ` ( G |`s ( s ` k ) ) ) = ( .g ` ( G |`s ( s ` k ) ) ) |
26 |
24 25
|
iscyg |
|- ( ( G |`s ( s ` k ) ) e. CycGrp <-> ( ( G |`s ( s ` k ) ) e. Grp /\ E. x e. ( Base ` ( G |`s ( s ` k ) ) ) ran ( n e. ZZ |-> ( n ( .g ` ( G |`s ( s ` k ) ) ) x ) ) = ( Base ` ( G |`s ( s ` k ) ) ) ) ) |
27 |
26
|
simprbi |
|- ( ( G |`s ( s ` k ) ) e. CycGrp -> E. x e. ( Base ` ( G |`s ( s ` k ) ) ) ran ( n e. ZZ |-> ( n ( .g ` ( G |`s ( s ` k ) ) ) x ) ) = ( Base ` ( G |`s ( s ` k ) ) ) ) |
28 |
23 27
|
syl |
|- ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ k e. dom s ) -> E. x e. ( Base ` ( G |`s ( s ` k ) ) ) ran ( n e. ZZ |-> ( n ( .g ` ( G |`s ( s ` k ) ) ) x ) ) = ( Base ` ( G |`s ( s ` k ) ) ) ) |
29 |
|
eqid |
|- ( G |`s ( s ` k ) ) = ( G |`s ( s ` k ) ) |
30 |
29
|
subgbas |
|- ( ( s ` k ) e. ( SubGrp ` G ) -> ( s ` k ) = ( Base ` ( G |`s ( s ` k ) ) ) ) |
31 |
18 30
|
syl |
|- ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ k e. dom s ) -> ( s ` k ) = ( Base ` ( G |`s ( s ` k ) ) ) ) |
32 |
31
|
rexeqdv |
|- ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ k e. dom s ) -> ( E. x e. ( s ` k ) ran ( n e. ZZ |-> ( n ( .g ` ( G |`s ( s ` k ) ) ) x ) ) = ( Base ` ( G |`s ( s ` k ) ) ) <-> E. x e. ( Base ` ( G |`s ( s ` k ) ) ) ran ( n e. ZZ |-> ( n ( .g ` ( G |`s ( s ` k ) ) ) x ) ) = ( Base ` ( G |`s ( s ` k ) ) ) ) ) |
33 |
28 32
|
mpbird |
|- ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ k e. dom s ) -> E. x e. ( s ` k ) ran ( n e. ZZ |-> ( n ( .g ` ( G |`s ( s ` k ) ) ) x ) ) = ( Base ` ( G |`s ( s ` k ) ) ) ) |
34 |
18
|
ad2antrr |
|- ( ( ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ k e. dom s ) /\ x e. ( s ` k ) ) /\ n e. ZZ ) -> ( s ` k ) e. ( SubGrp ` G ) ) |
35 |
|
simpr |
|- ( ( ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ k e. dom s ) /\ x e. ( s ` k ) ) /\ n e. ZZ ) -> n e. ZZ ) |
36 |
|
simplr |
|- ( ( ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ k e. dom s ) /\ x e. ( s ` k ) ) /\ n e. ZZ ) -> x e. ( s ` k ) ) |
37 |
5 29 25
|
subgmulg |
|- ( ( ( s ` k ) e. ( SubGrp ` G ) /\ n e. ZZ /\ x e. ( s ` k ) ) -> ( n .x. x ) = ( n ( .g ` ( G |`s ( s ` k ) ) ) x ) ) |
38 |
34 35 36 37
|
syl3anc |
|- ( ( ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ k e. dom s ) /\ x e. ( s ` k ) ) /\ n e. ZZ ) -> ( n .x. x ) = ( n ( .g ` ( G |`s ( s ` k ) ) ) x ) ) |
39 |
38
|
mpteq2dva |
|- ( ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ k e. dom s ) /\ x e. ( s ` k ) ) -> ( n e. ZZ |-> ( n .x. x ) ) = ( n e. ZZ |-> ( n ( .g ` ( G |`s ( s ` k ) ) ) x ) ) ) |
40 |
39
|
rneqd |
|- ( ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ k e. dom s ) /\ x e. ( s ` k ) ) -> ran ( n e. ZZ |-> ( n .x. x ) ) = ran ( n e. ZZ |-> ( n ( .g ` ( G |`s ( s ` k ) ) ) x ) ) ) |
41 |
31
|
adantr |
|- ( ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ k e. dom s ) /\ x e. ( s ` k ) ) -> ( s ` k ) = ( Base ` ( G |`s ( s ` k ) ) ) ) |
42 |
40 41
|
eqeq12d |
|- ( ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ k e. dom s ) /\ x e. ( s ` k ) ) -> ( ran ( n e. ZZ |-> ( n .x. x ) ) = ( s ` k ) <-> ran ( n e. ZZ |-> ( n ( .g ` ( G |`s ( s ` k ) ) ) x ) ) = ( Base ` ( G |`s ( s ` k ) ) ) ) ) |
43 |
42
|
rexbidva |
|- ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ k e. dom s ) -> ( E. x e. ( s ` k ) ran ( n e. ZZ |-> ( n .x. x ) ) = ( s ` k ) <-> E. x e. ( s ` k ) ran ( n e. ZZ |-> ( n ( .g ` ( G |`s ( s ` k ) ) ) x ) ) = ( Base ` ( G |`s ( s ` k ) ) ) ) ) |
44 |
33 43
|
mpbird |
|- ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ k e. dom s ) -> E. x e. ( s ` k ) ran ( n e. ZZ |-> ( n .x. x ) ) = ( s ` k ) ) |
45 |
|
ssrexv |
|- ( ( s ` k ) C_ B -> ( E. x e. ( s ` k ) ran ( n e. ZZ |-> ( n .x. x ) ) = ( s ` k ) -> E. x e. B ran ( n e. ZZ |-> ( n .x. x ) ) = ( s ` k ) ) ) |
46 |
20 44 45
|
sylc |
|- ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ k e. dom s ) -> E. x e. B ran ( n e. ZZ |-> ( n .x. x ) ) = ( s ` k ) ) |
47 |
46
|
ralrimiva |
|- ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) -> A. k e. dom s E. x e. B ran ( n e. ZZ |-> ( n .x. x ) ) = ( s ` k ) ) |
48 |
|
oveq2 |
|- ( x = ( w ` k ) -> ( n .x. x ) = ( n .x. ( w ` k ) ) ) |
49 |
48
|
mpteq2dv |
|- ( x = ( w ` k ) -> ( n e. ZZ |-> ( n .x. x ) ) = ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) ) |
50 |
49
|
rneqd |
|- ( x = ( w ` k ) -> ran ( n e. ZZ |-> ( n .x. x ) ) = ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) ) |
51 |
50
|
eqeq1d |
|- ( x = ( w ` k ) -> ( ran ( n e. ZZ |-> ( n .x. x ) ) = ( s ` k ) <-> ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) = ( s ` k ) ) ) |
52 |
51
|
ac6sfi |
|- ( ( dom s e. Fin /\ A. k e. dom s E. x e. B ran ( n e. ZZ |-> ( n .x. x ) ) = ( s ` k ) ) -> E. w ( w : dom s --> B /\ A. k e. dom s ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) = ( s ` k ) ) ) |
53 |
11 47 52
|
syl2anc |
|- ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) -> E. w ( w : dom s --> B /\ A. k e. dom s ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) = ( s ` k ) ) ) |
54 |
|
simprl |
|- ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ ( w : dom s --> B /\ A. k e. dom s ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) = ( s ` k ) ) ) -> w : dom s --> B ) |
55 |
9
|
adantr |
|- ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ ( w : dom s --> B /\ A. k e. dom s ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) = ( s ` k ) ) ) -> dom s = ( 0 ..^ ( # ` s ) ) ) |
56 |
55
|
feq2d |
|- ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ ( w : dom s --> B /\ A. k e. dom s ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) = ( s ` k ) ) ) -> ( w : dom s --> B <-> w : ( 0 ..^ ( # ` s ) ) --> B ) ) |
57 |
54 56
|
mpbid |
|- ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ ( w : dom s --> B /\ A. k e. dom s ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) = ( s ` k ) ) ) -> w : ( 0 ..^ ( # ` s ) ) --> B ) |
58 |
|
iswrdi |
|- ( w : ( 0 ..^ ( # ` s ) ) --> B -> w e. Word B ) |
59 |
57 58
|
syl |
|- ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ ( w : dom s --> B /\ A. k e. dom s ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) = ( s ` k ) ) ) -> w e. Word B ) |
60 |
54
|
fdmd |
|- ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ ( w : dom s --> B /\ A. k e. dom s ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) = ( s ` k ) ) ) -> dom w = dom s ) |
61 |
60
|
eleq2d |
|- ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ ( w : dom s --> B /\ A. k e. dom s ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) = ( s ` k ) ) ) -> ( j e. dom w <-> j e. dom s ) ) |
62 |
61
|
biimpa |
|- ( ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ ( w : dom s --> B /\ A. k e. dom s ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) = ( s ` k ) ) ) /\ j e. dom w ) -> j e. dom s ) |
63 |
|
simprr |
|- ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ ( w : dom s --> B /\ A. k e. dom s ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) = ( s ` k ) ) ) -> A. k e. dom s ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) = ( s ` k ) ) |
64 |
|
simpl |
|- ( ( k = j /\ n e. ZZ ) -> k = j ) |
65 |
64
|
fveq2d |
|- ( ( k = j /\ n e. ZZ ) -> ( w ` k ) = ( w ` j ) ) |
66 |
65
|
oveq2d |
|- ( ( k = j /\ n e. ZZ ) -> ( n .x. ( w ` k ) ) = ( n .x. ( w ` j ) ) ) |
67 |
66
|
mpteq2dva |
|- ( k = j -> ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) = ( n e. ZZ |-> ( n .x. ( w ` j ) ) ) ) |
68 |
67
|
rneqd |
|- ( k = j -> ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) = ran ( n e. ZZ |-> ( n .x. ( w ` j ) ) ) ) |
69 |
|
fveq2 |
|- ( k = j -> ( s ` k ) = ( s ` j ) ) |
70 |
68 69
|
eqeq12d |
|- ( k = j -> ( ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) = ( s ` k ) <-> ran ( n e. ZZ |-> ( n .x. ( w ` j ) ) ) = ( s ` j ) ) ) |
71 |
70
|
rspccva |
|- ( ( A. k e. dom s ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) = ( s ` k ) /\ j e. dom s ) -> ran ( n e. ZZ |-> ( n .x. ( w ` j ) ) ) = ( s ` j ) ) |
72 |
63 71
|
sylan |
|- ( ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ ( w : dom s --> B /\ A. k e. dom s ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) = ( s ` k ) ) ) /\ j e. dom s ) -> ran ( n e. ZZ |-> ( n .x. ( w ` j ) ) ) = ( s ` j ) ) |
73 |
12
|
adantr |
|- ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ ( w : dom s --> B /\ A. k e. dom s ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) = ( s ` k ) ) ) -> s : dom s --> C ) |
74 |
73
|
ffvelrnda |
|- ( ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ ( w : dom s --> B /\ A. k e. dom s ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) = ( s ` k ) ) ) /\ j e. dom s ) -> ( s ` j ) e. C ) |
75 |
72 74
|
eqeltrd |
|- ( ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ ( w : dom s --> B /\ A. k e. dom s ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) = ( s ` k ) ) ) /\ j e. dom s ) -> ran ( n e. ZZ |-> ( n .x. ( w ` j ) ) ) e. C ) |
76 |
62 75
|
syldan |
|- ( ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ ( w : dom s --> B /\ A. k e. dom s ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) = ( s ` k ) ) ) /\ j e. dom w ) -> ran ( n e. ZZ |-> ( n .x. ( w ` j ) ) ) e. C ) |
77 |
|
fveq2 |
|- ( k = j -> ( w ` k ) = ( w ` j ) ) |
78 |
77
|
oveq2d |
|- ( k = j -> ( n .x. ( w ` k ) ) = ( n .x. ( w ` j ) ) ) |
79 |
78
|
mpteq2dv |
|- ( k = j -> ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) = ( n e. ZZ |-> ( n .x. ( w ` j ) ) ) ) |
80 |
79
|
rneqd |
|- ( k = j -> ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) = ran ( n e. ZZ |-> ( n .x. ( w ` j ) ) ) ) |
81 |
80
|
cbvmptv |
|- ( k e. dom w |-> ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) ) = ( j e. dom w |-> ran ( n e. ZZ |-> ( n .x. ( w ` j ) ) ) ) |
82 |
6 81
|
eqtri |
|- S = ( j e. dom w |-> ran ( n e. ZZ |-> ( n .x. ( w ` j ) ) ) ) |
83 |
76 82
|
fmptd |
|- ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ ( w : dom s --> B /\ A. k e. dom s ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) = ( s ` k ) ) ) -> S : dom w --> C ) |
84 |
|
simprl |
|- ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) -> G dom DProd s ) |
85 |
84
|
adantr |
|- ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ ( w : dom s --> B /\ A. k e. dom s ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) = ( s ` k ) ) ) -> G dom DProd s ) |
86 |
60
|
raleqdv |
|- ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ ( w : dom s --> B /\ A. k e. dom s ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) = ( s ` k ) ) ) -> ( A. k e. dom w ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) = ( s ` k ) <-> A. k e. dom s ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) = ( s ` k ) ) ) |
87 |
63 86
|
mpbird |
|- ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ ( w : dom s --> B /\ A. k e. dom s ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) = ( s ` k ) ) ) -> A. k e. dom w ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) = ( s ` k ) ) |
88 |
|
mpteq12 |
|- ( ( dom w = dom s /\ A. k e. dom w ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) = ( s ` k ) ) -> ( k e. dom w |-> ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) ) = ( k e. dom s |-> ( s ` k ) ) ) |
89 |
60 87 88
|
syl2anc |
|- ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ ( w : dom s --> B /\ A. k e. dom s ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) = ( s ` k ) ) ) -> ( k e. dom w |-> ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) ) = ( k e. dom s |-> ( s ` k ) ) ) |
90 |
6 89
|
eqtrid |
|- ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ ( w : dom s --> B /\ A. k e. dom s ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) = ( s ` k ) ) ) -> S = ( k e. dom s |-> ( s ` k ) ) ) |
91 |
|
dprdf |
|- ( G dom DProd s -> s : dom s --> ( SubGrp ` G ) ) |
92 |
85 91
|
syl |
|- ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ ( w : dom s --> B /\ A. k e. dom s ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) = ( s ` k ) ) ) -> s : dom s --> ( SubGrp ` G ) ) |
93 |
92
|
feqmptd |
|- ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ ( w : dom s --> B /\ A. k e. dom s ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) = ( s ` k ) ) ) -> s = ( k e. dom s |-> ( s ` k ) ) ) |
94 |
90 93
|
eqtr4d |
|- ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ ( w : dom s --> B /\ A. k e. dom s ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) = ( s ` k ) ) ) -> S = s ) |
95 |
85 94
|
breqtrrd |
|- ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ ( w : dom s --> B /\ A. k e. dom s ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) = ( s ` k ) ) ) -> G dom DProd S ) |
96 |
94
|
oveq2d |
|- ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ ( w : dom s --> B /\ A. k e. dom s ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) = ( s ` k ) ) ) -> ( G DProd S ) = ( G DProd s ) ) |
97 |
|
simplrr |
|- ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ ( w : dom s --> B /\ A. k e. dom s ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) = ( s ` k ) ) ) -> ( G DProd s ) = B ) |
98 |
96 97
|
eqtrd |
|- ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ ( w : dom s --> B /\ A. k e. dom s ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) = ( s ` k ) ) ) -> ( G DProd S ) = B ) |
99 |
83 95 98
|
3jca |
|- ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ ( w : dom s --> B /\ A. k e. dom s ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) = ( s ` k ) ) ) -> ( S : dom w --> C /\ G dom DProd S /\ ( G DProd S ) = B ) ) |
100 |
59 99
|
jca |
|- ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ ( w : dom s --> B /\ A. k e. dom s ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) = ( s ` k ) ) ) -> ( w e. Word B /\ ( S : dom w --> C /\ G dom DProd S /\ ( G DProd S ) = B ) ) ) |
101 |
100
|
ex |
|- ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) -> ( ( w : dom s --> B /\ A. k e. dom s ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) = ( s ` k ) ) -> ( w e. Word B /\ ( S : dom w --> C /\ G dom DProd S /\ ( G DProd S ) = B ) ) ) ) |
102 |
101
|
eximdv |
|- ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) -> ( E. w ( w : dom s --> B /\ A. k e. dom s ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) = ( s ` k ) ) -> E. w ( w e. Word B /\ ( S : dom w --> C /\ G dom DProd S /\ ( G DProd S ) = B ) ) ) ) |
103 |
53 102
|
mpd |
|- ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) -> E. w ( w e. Word B /\ ( S : dom w --> C /\ G dom DProd S /\ ( G DProd S ) = B ) ) ) |
104 |
|
df-rex |
|- ( E. w e. Word B ( S : dom w --> C /\ G dom DProd S /\ ( G DProd S ) = B ) <-> E. w ( w e. Word B /\ ( S : dom w --> C /\ G dom DProd S /\ ( G DProd S ) = B ) ) ) |
105 |
103 104
|
sylibr |
|- ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) -> E. w e. Word B ( S : dom w --> C /\ G dom DProd S /\ ( G DProd S ) = B ) ) |
106 |
1 2 3 4
|
ablfac |
|- ( ph -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = B ) ) |
107 |
105 106
|
r19.29a |
|- ( ph -> E. w e. Word B ( S : dom w --> C /\ G dom DProd S /\ ( G DProd S ) = B ) ) |