Step |
Hyp |
Ref |
Expression |
1 |
|
ablfac.b |
|- B = ( Base ` G ) |
2 |
|
ablfac.c |
|- C = { r e. ( SubGrp ` G ) | ( G |`s r ) e. ( CycGrp i^i ran pGrp ) } |
3 |
|
ablfac.1 |
|- ( ph -> G e. Abel ) |
4 |
|
ablfac.2 |
|- ( ph -> B e. Fin ) |
5 |
|
ablfac.o |
|- O = ( od ` G ) |
6 |
|
ablfac.a |
|- A = { w e. Prime | w || ( # ` B ) } |
7 |
|
ablfac.s |
|- S = ( p e. A |-> { x e. B | ( O ` x ) || ( p ^ ( p pCnt ( # ` B ) ) ) } ) |
8 |
|
ablfac.w |
|- W = ( g e. ( SubGrp ` G ) |-> { s e. Word C | ( G dom DProd s /\ ( G DProd s ) = g ) } ) |
9 |
|
eqeq2 |
|- ( g = U -> ( ( G DProd s ) = g <-> ( G DProd s ) = U ) ) |
10 |
9
|
anbi2d |
|- ( g = U -> ( ( G dom DProd s /\ ( G DProd s ) = g ) <-> ( G dom DProd s /\ ( G DProd s ) = U ) ) ) |
11 |
10
|
rabbidv |
|- ( g = U -> { s e. Word C | ( G dom DProd s /\ ( G DProd s ) = g ) } = { s e. Word C | ( G dom DProd s /\ ( G DProd s ) = U ) } ) |
12 |
|
fvex |
|- ( SubGrp ` G ) e. _V |
13 |
2 12
|
rabex2 |
|- C e. _V |
14 |
13
|
wrdexi |
|- Word C e. _V |
15 |
14
|
rabex |
|- { s e. Word C | ( G dom DProd s /\ ( G DProd s ) = U ) } e. _V |
16 |
11 8 15
|
fvmpt |
|- ( U e. ( SubGrp ` G ) -> ( W ` U ) = { s e. Word C | ( G dom DProd s /\ ( G DProd s ) = U ) } ) |