Step |
Hyp |
Ref |
Expression |
1 |
|
ablfacrp.b |
|- B = ( Base ` G ) |
2 |
|
ablfacrp.o |
|- O = ( od ` G ) |
3 |
|
ablfacrp.k |
|- K = { x e. B | ( O ` x ) || M } |
4 |
|
ablfacrp.l |
|- L = { x e. B | ( O ` x ) || N } |
5 |
|
ablfacrp.g |
|- ( ph -> G e. Abel ) |
6 |
|
ablfacrp.m |
|- ( ph -> M e. NN ) |
7 |
|
ablfacrp.n |
|- ( ph -> N e. NN ) |
8 |
|
ablfacrp.1 |
|- ( ph -> ( M gcd N ) = 1 ) |
9 |
|
ablfacrp.2 |
|- ( ph -> ( # ` B ) = ( M x. N ) ) |
10 |
|
ablfacrp.z |
|- .0. = ( 0g ` G ) |
11 |
|
ablfacrp.s |
|- .(+) = ( LSSum ` G ) |
12 |
3 4
|
ineq12i |
|- ( K i^i L ) = ( { x e. B | ( O ` x ) || M } i^i { x e. B | ( O ` x ) || N } ) |
13 |
|
inrab |
|- ( { x e. B | ( O ` x ) || M } i^i { x e. B | ( O ` x ) || N } ) = { x e. B | ( ( O ` x ) || M /\ ( O ` x ) || N ) } |
14 |
12 13
|
eqtri |
|- ( K i^i L ) = { x e. B | ( ( O ` x ) || M /\ ( O ` x ) || N ) } |
15 |
1 2
|
odcl |
|- ( x e. B -> ( O ` x ) e. NN0 ) |
16 |
15
|
adantl |
|- ( ( ph /\ x e. B ) -> ( O ` x ) e. NN0 ) |
17 |
16
|
nn0zd |
|- ( ( ph /\ x e. B ) -> ( O ` x ) e. ZZ ) |
18 |
6
|
nnzd |
|- ( ph -> M e. ZZ ) |
19 |
18
|
adantr |
|- ( ( ph /\ x e. B ) -> M e. ZZ ) |
20 |
7
|
nnzd |
|- ( ph -> N e. ZZ ) |
21 |
20
|
adantr |
|- ( ( ph /\ x e. B ) -> N e. ZZ ) |
22 |
|
dvdsgcd |
|- ( ( ( O ` x ) e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( ( O ` x ) || M /\ ( O ` x ) || N ) -> ( O ` x ) || ( M gcd N ) ) ) |
23 |
17 19 21 22
|
syl3anc |
|- ( ( ph /\ x e. B ) -> ( ( ( O ` x ) || M /\ ( O ` x ) || N ) -> ( O ` x ) || ( M gcd N ) ) ) |
24 |
23
|
3impia |
|- ( ( ph /\ x e. B /\ ( ( O ` x ) || M /\ ( O ` x ) || N ) ) -> ( O ` x ) || ( M gcd N ) ) |
25 |
8
|
3ad2ant1 |
|- ( ( ph /\ x e. B /\ ( ( O ` x ) || M /\ ( O ` x ) || N ) ) -> ( M gcd N ) = 1 ) |
26 |
24 25
|
breqtrd |
|- ( ( ph /\ x e. B /\ ( ( O ` x ) || M /\ ( O ` x ) || N ) ) -> ( O ` x ) || 1 ) |
27 |
|
simp2 |
|- ( ( ph /\ x e. B /\ ( ( O ` x ) || M /\ ( O ` x ) || N ) ) -> x e. B ) |
28 |
|
dvds1 |
|- ( ( O ` x ) e. NN0 -> ( ( O ` x ) || 1 <-> ( O ` x ) = 1 ) ) |
29 |
27 15 28
|
3syl |
|- ( ( ph /\ x e. B /\ ( ( O ` x ) || M /\ ( O ` x ) || N ) ) -> ( ( O ` x ) || 1 <-> ( O ` x ) = 1 ) ) |
30 |
26 29
|
mpbid |
|- ( ( ph /\ x e. B /\ ( ( O ` x ) || M /\ ( O ` x ) || N ) ) -> ( O ` x ) = 1 ) |
31 |
|
ablgrp |
|- ( G e. Abel -> G e. Grp ) |
32 |
5 31
|
syl |
|- ( ph -> G e. Grp ) |
33 |
32
|
3ad2ant1 |
|- ( ( ph /\ x e. B /\ ( ( O ` x ) || M /\ ( O ` x ) || N ) ) -> G e. Grp ) |
34 |
2 10 1
|
odeq1 |
|- ( ( G e. Grp /\ x e. B ) -> ( ( O ` x ) = 1 <-> x = .0. ) ) |
35 |
33 27 34
|
syl2anc |
|- ( ( ph /\ x e. B /\ ( ( O ` x ) || M /\ ( O ` x ) || N ) ) -> ( ( O ` x ) = 1 <-> x = .0. ) ) |
36 |
30 35
|
mpbid |
|- ( ( ph /\ x e. B /\ ( ( O ` x ) || M /\ ( O ` x ) || N ) ) -> x = .0. ) |
37 |
|
velsn |
|- ( x e. { .0. } <-> x = .0. ) |
38 |
36 37
|
sylibr |
|- ( ( ph /\ x e. B /\ ( ( O ` x ) || M /\ ( O ` x ) || N ) ) -> x e. { .0. } ) |
39 |
38
|
rabssdv |
|- ( ph -> { x e. B | ( ( O ` x ) || M /\ ( O ` x ) || N ) } C_ { .0. } ) |
40 |
14 39
|
eqsstrid |
|- ( ph -> ( K i^i L ) C_ { .0. } ) |
41 |
2 1
|
oddvdssubg |
|- ( ( G e. Abel /\ M e. ZZ ) -> { x e. B | ( O ` x ) || M } e. ( SubGrp ` G ) ) |
42 |
5 18 41
|
syl2anc |
|- ( ph -> { x e. B | ( O ` x ) || M } e. ( SubGrp ` G ) ) |
43 |
3 42
|
eqeltrid |
|- ( ph -> K e. ( SubGrp ` G ) ) |
44 |
10
|
subg0cl |
|- ( K e. ( SubGrp ` G ) -> .0. e. K ) |
45 |
43 44
|
syl |
|- ( ph -> .0. e. K ) |
46 |
2 1
|
oddvdssubg |
|- ( ( G e. Abel /\ N e. ZZ ) -> { x e. B | ( O ` x ) || N } e. ( SubGrp ` G ) ) |
47 |
5 20 46
|
syl2anc |
|- ( ph -> { x e. B | ( O ` x ) || N } e. ( SubGrp ` G ) ) |
48 |
4 47
|
eqeltrid |
|- ( ph -> L e. ( SubGrp ` G ) ) |
49 |
10
|
subg0cl |
|- ( L e. ( SubGrp ` G ) -> .0. e. L ) |
50 |
48 49
|
syl |
|- ( ph -> .0. e. L ) |
51 |
45 50
|
elind |
|- ( ph -> .0. e. ( K i^i L ) ) |
52 |
51
|
snssd |
|- ( ph -> { .0. } C_ ( K i^i L ) ) |
53 |
40 52
|
eqssd |
|- ( ph -> ( K i^i L ) = { .0. } ) |
54 |
11
|
lsmsubg2 |
|- ( ( G e. Abel /\ K e. ( SubGrp ` G ) /\ L e. ( SubGrp ` G ) ) -> ( K .(+) L ) e. ( SubGrp ` G ) ) |
55 |
5 43 48 54
|
syl3anc |
|- ( ph -> ( K .(+) L ) e. ( SubGrp ` G ) ) |
56 |
1
|
subgss |
|- ( ( K .(+) L ) e. ( SubGrp ` G ) -> ( K .(+) L ) C_ B ) |
57 |
55 56
|
syl |
|- ( ph -> ( K .(+) L ) C_ B ) |
58 |
|
eqid |
|- ( .g ` G ) = ( .g ` G ) |
59 |
1 58
|
mulg1 |
|- ( g e. B -> ( 1 ( .g ` G ) g ) = g ) |
60 |
59
|
adantl |
|- ( ( ph /\ g e. B ) -> ( 1 ( .g ` G ) g ) = g ) |
61 |
|
bezout |
|- ( ( M e. ZZ /\ N e. ZZ ) -> E. a e. ZZ E. b e. ZZ ( M gcd N ) = ( ( M x. a ) + ( N x. b ) ) ) |
62 |
18 20 61
|
syl2anc |
|- ( ph -> E. a e. ZZ E. b e. ZZ ( M gcd N ) = ( ( M x. a ) + ( N x. b ) ) ) |
63 |
62
|
adantr |
|- ( ( ph /\ g e. B ) -> E. a e. ZZ E. b e. ZZ ( M gcd N ) = ( ( M x. a ) + ( N x. b ) ) ) |
64 |
8
|
ad2antrr |
|- ( ( ( ph /\ g e. B ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( M gcd N ) = 1 ) |
65 |
64
|
eqeq1d |
|- ( ( ( ph /\ g e. B ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( M gcd N ) = ( ( M x. a ) + ( N x. b ) ) <-> 1 = ( ( M x. a ) + ( N x. b ) ) ) ) |
66 |
18
|
ad2antrr |
|- ( ( ( ph /\ g e. B ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> M e. ZZ ) |
67 |
|
simprl |
|- ( ( ( ph /\ g e. B ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> a e. ZZ ) |
68 |
66 67
|
zmulcld |
|- ( ( ( ph /\ g e. B ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( M x. a ) e. ZZ ) |
69 |
68
|
zcnd |
|- ( ( ( ph /\ g e. B ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( M x. a ) e. CC ) |
70 |
20
|
ad2antrr |
|- ( ( ( ph /\ g e. B ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> N e. ZZ ) |
71 |
|
simprr |
|- ( ( ( ph /\ g e. B ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> b e. ZZ ) |
72 |
70 71
|
zmulcld |
|- ( ( ( ph /\ g e. B ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( N x. b ) e. ZZ ) |
73 |
72
|
zcnd |
|- ( ( ( ph /\ g e. B ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( N x. b ) e. CC ) |
74 |
69 73
|
addcomd |
|- ( ( ( ph /\ g e. B ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( M x. a ) + ( N x. b ) ) = ( ( N x. b ) + ( M x. a ) ) ) |
75 |
74
|
oveq1d |
|- ( ( ( ph /\ g e. B ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( ( M x. a ) + ( N x. b ) ) ( .g ` G ) g ) = ( ( ( N x. b ) + ( M x. a ) ) ( .g ` G ) g ) ) |
76 |
32
|
ad2antrr |
|- ( ( ( ph /\ g e. B ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> G e. Grp ) |
77 |
|
simplr |
|- ( ( ( ph /\ g e. B ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> g e. B ) |
78 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
79 |
1 58 78
|
mulgdir |
|- ( ( G e. Grp /\ ( ( N x. b ) e. ZZ /\ ( M x. a ) e. ZZ /\ g e. B ) ) -> ( ( ( N x. b ) + ( M x. a ) ) ( .g ` G ) g ) = ( ( ( N x. b ) ( .g ` G ) g ) ( +g ` G ) ( ( M x. a ) ( .g ` G ) g ) ) ) |
80 |
76 72 68 77 79
|
syl13anc |
|- ( ( ( ph /\ g e. B ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( ( N x. b ) + ( M x. a ) ) ( .g ` G ) g ) = ( ( ( N x. b ) ( .g ` G ) g ) ( +g ` G ) ( ( M x. a ) ( .g ` G ) g ) ) ) |
81 |
75 80
|
eqtrd |
|- ( ( ( ph /\ g e. B ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( ( M x. a ) + ( N x. b ) ) ( .g ` G ) g ) = ( ( ( N x. b ) ( .g ` G ) g ) ( +g ` G ) ( ( M x. a ) ( .g ` G ) g ) ) ) |
82 |
43
|
ad2antrr |
|- ( ( ( ph /\ g e. B ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> K e. ( SubGrp ` G ) ) |
83 |
48
|
ad2antrr |
|- ( ( ( ph /\ g e. B ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> L e. ( SubGrp ` G ) ) |
84 |
1 58
|
mulgcl |
|- ( ( G e. Grp /\ ( N x. b ) e. ZZ /\ g e. B ) -> ( ( N x. b ) ( .g ` G ) g ) e. B ) |
85 |
76 72 77 84
|
syl3anc |
|- ( ( ( ph /\ g e. B ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( N x. b ) ( .g ` G ) g ) e. B ) |
86 |
1 2
|
odcl |
|- ( g e. B -> ( O ` g ) e. NN0 ) |
87 |
86
|
ad2antlr |
|- ( ( ( ph /\ g e. B ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( O ` g ) e. NN0 ) |
88 |
87
|
nn0zd |
|- ( ( ( ph /\ g e. B ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( O ` g ) e. ZZ ) |
89 |
66 70
|
zmulcld |
|- ( ( ( ph /\ g e. B ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( M x. N ) e. ZZ ) |
90 |
6 7
|
nnmulcld |
|- ( ph -> ( M x. N ) e. NN ) |
91 |
90
|
nnnn0d |
|- ( ph -> ( M x. N ) e. NN0 ) |
92 |
9 91
|
eqeltrd |
|- ( ph -> ( # ` B ) e. NN0 ) |
93 |
1
|
fvexi |
|- B e. _V |
94 |
|
hashclb |
|- ( B e. _V -> ( B e. Fin <-> ( # ` B ) e. NN0 ) ) |
95 |
93 94
|
ax-mp |
|- ( B e. Fin <-> ( # ` B ) e. NN0 ) |
96 |
92 95
|
sylibr |
|- ( ph -> B e. Fin ) |
97 |
96
|
ad2antrr |
|- ( ( ( ph /\ g e. B ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> B e. Fin ) |
98 |
1 2
|
oddvds2 |
|- ( ( G e. Grp /\ B e. Fin /\ g e. B ) -> ( O ` g ) || ( # ` B ) ) |
99 |
76 97 77 98
|
syl3anc |
|- ( ( ( ph /\ g e. B ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( O ` g ) || ( # ` B ) ) |
100 |
9
|
ad2antrr |
|- ( ( ( ph /\ g e. B ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( # ` B ) = ( M x. N ) ) |
101 |
99 100
|
breqtrd |
|- ( ( ( ph /\ g e. B ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( O ` g ) || ( M x. N ) ) |
102 |
88 89 71 101
|
dvdsmultr1d |
|- ( ( ( ph /\ g e. B ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( O ` g ) || ( ( M x. N ) x. b ) ) |
103 |
66
|
zcnd |
|- ( ( ( ph /\ g e. B ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> M e. CC ) |
104 |
70
|
zcnd |
|- ( ( ( ph /\ g e. B ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> N e. CC ) |
105 |
71
|
zcnd |
|- ( ( ( ph /\ g e. B ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> b e. CC ) |
106 |
103 104 105
|
mulassd |
|- ( ( ( ph /\ g e. B ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( M x. N ) x. b ) = ( M x. ( N x. b ) ) ) |
107 |
102 106
|
breqtrd |
|- ( ( ( ph /\ g e. B ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( O ` g ) || ( M x. ( N x. b ) ) ) |
108 |
1 2 58
|
odmulgid |
|- ( ( ( G e. Grp /\ g e. B /\ ( N x. b ) e. ZZ ) /\ M e. ZZ ) -> ( ( O ` ( ( N x. b ) ( .g ` G ) g ) ) || M <-> ( O ` g ) || ( M x. ( N x. b ) ) ) ) |
109 |
76 77 72 66 108
|
syl31anc |
|- ( ( ( ph /\ g e. B ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( O ` ( ( N x. b ) ( .g ` G ) g ) ) || M <-> ( O ` g ) || ( M x. ( N x. b ) ) ) ) |
110 |
107 109
|
mpbird |
|- ( ( ( ph /\ g e. B ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( O ` ( ( N x. b ) ( .g ` G ) g ) ) || M ) |
111 |
|
fveq2 |
|- ( x = ( ( N x. b ) ( .g ` G ) g ) -> ( O ` x ) = ( O ` ( ( N x. b ) ( .g ` G ) g ) ) ) |
112 |
111
|
breq1d |
|- ( x = ( ( N x. b ) ( .g ` G ) g ) -> ( ( O ` x ) || M <-> ( O ` ( ( N x. b ) ( .g ` G ) g ) ) || M ) ) |
113 |
112 3
|
elrab2 |
|- ( ( ( N x. b ) ( .g ` G ) g ) e. K <-> ( ( ( N x. b ) ( .g ` G ) g ) e. B /\ ( O ` ( ( N x. b ) ( .g ` G ) g ) ) || M ) ) |
114 |
85 110 113
|
sylanbrc |
|- ( ( ( ph /\ g e. B ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( N x. b ) ( .g ` G ) g ) e. K ) |
115 |
1 58
|
mulgcl |
|- ( ( G e. Grp /\ ( M x. a ) e. ZZ /\ g e. B ) -> ( ( M x. a ) ( .g ` G ) g ) e. B ) |
116 |
76 68 77 115
|
syl3anc |
|- ( ( ( ph /\ g e. B ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( M x. a ) ( .g ` G ) g ) e. B ) |
117 |
88 89 67 101
|
dvdsmultr1d |
|- ( ( ( ph /\ g e. B ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( O ` g ) || ( ( M x. N ) x. a ) ) |
118 |
|
zcn |
|- ( a e. ZZ -> a e. CC ) |
119 |
118
|
ad2antrl |
|- ( ( ( ph /\ g e. B ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> a e. CC ) |
120 |
|
mulass |
|- ( ( M e. CC /\ N e. CC /\ a e. CC ) -> ( ( M x. N ) x. a ) = ( M x. ( N x. a ) ) ) |
121 |
|
mul12 |
|- ( ( M e. CC /\ N e. CC /\ a e. CC ) -> ( M x. ( N x. a ) ) = ( N x. ( M x. a ) ) ) |
122 |
120 121
|
eqtrd |
|- ( ( M e. CC /\ N e. CC /\ a e. CC ) -> ( ( M x. N ) x. a ) = ( N x. ( M x. a ) ) ) |
123 |
103 104 119 122
|
syl3anc |
|- ( ( ( ph /\ g e. B ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( M x. N ) x. a ) = ( N x. ( M x. a ) ) ) |
124 |
117 123
|
breqtrd |
|- ( ( ( ph /\ g e. B ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( O ` g ) || ( N x. ( M x. a ) ) ) |
125 |
1 2 58
|
odmulgid |
|- ( ( ( G e. Grp /\ g e. B /\ ( M x. a ) e. ZZ ) /\ N e. ZZ ) -> ( ( O ` ( ( M x. a ) ( .g ` G ) g ) ) || N <-> ( O ` g ) || ( N x. ( M x. a ) ) ) ) |
126 |
76 77 68 70 125
|
syl31anc |
|- ( ( ( ph /\ g e. B ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( O ` ( ( M x. a ) ( .g ` G ) g ) ) || N <-> ( O ` g ) || ( N x. ( M x. a ) ) ) ) |
127 |
124 126
|
mpbird |
|- ( ( ( ph /\ g e. B ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( O ` ( ( M x. a ) ( .g ` G ) g ) ) || N ) |
128 |
|
fveq2 |
|- ( x = ( ( M x. a ) ( .g ` G ) g ) -> ( O ` x ) = ( O ` ( ( M x. a ) ( .g ` G ) g ) ) ) |
129 |
128
|
breq1d |
|- ( x = ( ( M x. a ) ( .g ` G ) g ) -> ( ( O ` x ) || N <-> ( O ` ( ( M x. a ) ( .g ` G ) g ) ) || N ) ) |
130 |
129 4
|
elrab2 |
|- ( ( ( M x. a ) ( .g ` G ) g ) e. L <-> ( ( ( M x. a ) ( .g ` G ) g ) e. B /\ ( O ` ( ( M x. a ) ( .g ` G ) g ) ) || N ) ) |
131 |
116 127 130
|
sylanbrc |
|- ( ( ( ph /\ g e. B ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( M x. a ) ( .g ` G ) g ) e. L ) |
132 |
78 11
|
lsmelvali |
|- ( ( ( K e. ( SubGrp ` G ) /\ L e. ( SubGrp ` G ) ) /\ ( ( ( N x. b ) ( .g ` G ) g ) e. K /\ ( ( M x. a ) ( .g ` G ) g ) e. L ) ) -> ( ( ( N x. b ) ( .g ` G ) g ) ( +g ` G ) ( ( M x. a ) ( .g ` G ) g ) ) e. ( K .(+) L ) ) |
133 |
82 83 114 131 132
|
syl22anc |
|- ( ( ( ph /\ g e. B ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( ( N x. b ) ( .g ` G ) g ) ( +g ` G ) ( ( M x. a ) ( .g ` G ) g ) ) e. ( K .(+) L ) ) |
134 |
81 133
|
eqeltrd |
|- ( ( ( ph /\ g e. B ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( ( M x. a ) + ( N x. b ) ) ( .g ` G ) g ) e. ( K .(+) L ) ) |
135 |
|
oveq1 |
|- ( 1 = ( ( M x. a ) + ( N x. b ) ) -> ( 1 ( .g ` G ) g ) = ( ( ( M x. a ) + ( N x. b ) ) ( .g ` G ) g ) ) |
136 |
135
|
eleq1d |
|- ( 1 = ( ( M x. a ) + ( N x. b ) ) -> ( ( 1 ( .g ` G ) g ) e. ( K .(+) L ) <-> ( ( ( M x. a ) + ( N x. b ) ) ( .g ` G ) g ) e. ( K .(+) L ) ) ) |
137 |
134 136
|
syl5ibrcom |
|- ( ( ( ph /\ g e. B ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( 1 = ( ( M x. a ) + ( N x. b ) ) -> ( 1 ( .g ` G ) g ) e. ( K .(+) L ) ) ) |
138 |
65 137
|
sylbid |
|- ( ( ( ph /\ g e. B ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( M gcd N ) = ( ( M x. a ) + ( N x. b ) ) -> ( 1 ( .g ` G ) g ) e. ( K .(+) L ) ) ) |
139 |
138
|
rexlimdvva |
|- ( ( ph /\ g e. B ) -> ( E. a e. ZZ E. b e. ZZ ( M gcd N ) = ( ( M x. a ) + ( N x. b ) ) -> ( 1 ( .g ` G ) g ) e. ( K .(+) L ) ) ) |
140 |
63 139
|
mpd |
|- ( ( ph /\ g e. B ) -> ( 1 ( .g ` G ) g ) e. ( K .(+) L ) ) |
141 |
60 140
|
eqeltrrd |
|- ( ( ph /\ g e. B ) -> g e. ( K .(+) L ) ) |
142 |
57 141
|
eqelssd |
|- ( ph -> ( K .(+) L ) = B ) |
143 |
53 142
|
jca |
|- ( ph -> ( ( K i^i L ) = { .0. } /\ ( K .(+) L ) = B ) ) |