Step |
Hyp |
Ref |
Expression |
1 |
|
ablfacrp.b |
|- B = ( Base ` G ) |
2 |
|
ablfacrp.o |
|- O = ( od ` G ) |
3 |
|
ablfacrp.k |
|- K = { x e. B | ( O ` x ) || M } |
4 |
|
ablfacrp.l |
|- L = { x e. B | ( O ` x ) || N } |
5 |
|
ablfacrp.g |
|- ( ph -> G e. Abel ) |
6 |
|
ablfacrp.m |
|- ( ph -> M e. NN ) |
7 |
|
ablfacrp.n |
|- ( ph -> N e. NN ) |
8 |
|
ablfacrp.1 |
|- ( ph -> ( M gcd N ) = 1 ) |
9 |
|
ablfacrp.2 |
|- ( ph -> ( # ` B ) = ( M x. N ) ) |
10 |
6
|
nnnn0d |
|- ( ph -> M e. NN0 ) |
11 |
7
|
nnnn0d |
|- ( ph -> N e. NN0 ) |
12 |
10 11
|
nn0mulcld |
|- ( ph -> ( M x. N ) e. NN0 ) |
13 |
9 12
|
eqeltrd |
|- ( ph -> ( # ` B ) e. NN0 ) |
14 |
1
|
fvexi |
|- B e. _V |
15 |
|
hashclb |
|- ( B e. _V -> ( B e. Fin <-> ( # ` B ) e. NN0 ) ) |
16 |
14 15
|
ax-mp |
|- ( B e. Fin <-> ( # ` B ) e. NN0 ) |
17 |
13 16
|
sylibr |
|- ( ph -> B e. Fin ) |
18 |
3
|
ssrab3 |
|- K C_ B |
19 |
|
ssfi |
|- ( ( B e. Fin /\ K C_ B ) -> K e. Fin ) |
20 |
17 18 19
|
sylancl |
|- ( ph -> K e. Fin ) |
21 |
|
hashcl |
|- ( K e. Fin -> ( # ` K ) e. NN0 ) |
22 |
20 21
|
syl |
|- ( ph -> ( # ` K ) e. NN0 ) |
23 |
6
|
nnzd |
|- ( ph -> M e. ZZ ) |
24 |
2 1
|
oddvdssubg |
|- ( ( G e. Abel /\ M e. ZZ ) -> { x e. B | ( O ` x ) || M } e. ( SubGrp ` G ) ) |
25 |
5 23 24
|
syl2anc |
|- ( ph -> { x e. B | ( O ` x ) || M } e. ( SubGrp ` G ) ) |
26 |
3 25
|
eqeltrid |
|- ( ph -> K e. ( SubGrp ` G ) ) |
27 |
1
|
lagsubg |
|- ( ( K e. ( SubGrp ` G ) /\ B e. Fin ) -> ( # ` K ) || ( # ` B ) ) |
28 |
26 17 27
|
syl2anc |
|- ( ph -> ( # ` K ) || ( # ` B ) ) |
29 |
6
|
nncnd |
|- ( ph -> M e. CC ) |
30 |
7
|
nncnd |
|- ( ph -> N e. CC ) |
31 |
29 30
|
mulcomd |
|- ( ph -> ( M x. N ) = ( N x. M ) ) |
32 |
9 31
|
eqtrd |
|- ( ph -> ( # ` B ) = ( N x. M ) ) |
33 |
28 32
|
breqtrd |
|- ( ph -> ( # ` K ) || ( N x. M ) ) |
34 |
1 2 3 4 5 6 7 8 9
|
ablfacrplem |
|- ( ph -> ( ( # ` K ) gcd N ) = 1 ) |
35 |
22
|
nn0zd |
|- ( ph -> ( # ` K ) e. ZZ ) |
36 |
7
|
nnzd |
|- ( ph -> N e. ZZ ) |
37 |
|
coprmdvds |
|- ( ( ( # ` K ) e. ZZ /\ N e. ZZ /\ M e. ZZ ) -> ( ( ( # ` K ) || ( N x. M ) /\ ( ( # ` K ) gcd N ) = 1 ) -> ( # ` K ) || M ) ) |
38 |
35 36 23 37
|
syl3anc |
|- ( ph -> ( ( ( # ` K ) || ( N x. M ) /\ ( ( # ` K ) gcd N ) = 1 ) -> ( # ` K ) || M ) ) |
39 |
33 34 38
|
mp2and |
|- ( ph -> ( # ` K ) || M ) |
40 |
2 1
|
oddvdssubg |
|- ( ( G e. Abel /\ N e. ZZ ) -> { x e. B | ( O ` x ) || N } e. ( SubGrp ` G ) ) |
41 |
5 36 40
|
syl2anc |
|- ( ph -> { x e. B | ( O ` x ) || N } e. ( SubGrp ` G ) ) |
42 |
4 41
|
eqeltrid |
|- ( ph -> L e. ( SubGrp ` G ) ) |
43 |
1
|
lagsubg |
|- ( ( L e. ( SubGrp ` G ) /\ B e. Fin ) -> ( # ` L ) || ( # ` B ) ) |
44 |
42 17 43
|
syl2anc |
|- ( ph -> ( # ` L ) || ( # ` B ) ) |
45 |
44 9
|
breqtrd |
|- ( ph -> ( # ` L ) || ( M x. N ) ) |
46 |
23 36
|
gcdcomd |
|- ( ph -> ( M gcd N ) = ( N gcd M ) ) |
47 |
46 8
|
eqtr3d |
|- ( ph -> ( N gcd M ) = 1 ) |
48 |
1 2 4 3 5 7 6 47 32
|
ablfacrplem |
|- ( ph -> ( ( # ` L ) gcd M ) = 1 ) |
49 |
4
|
ssrab3 |
|- L C_ B |
50 |
|
ssfi |
|- ( ( B e. Fin /\ L C_ B ) -> L e. Fin ) |
51 |
17 49 50
|
sylancl |
|- ( ph -> L e. Fin ) |
52 |
|
hashcl |
|- ( L e. Fin -> ( # ` L ) e. NN0 ) |
53 |
51 52
|
syl |
|- ( ph -> ( # ` L ) e. NN0 ) |
54 |
53
|
nn0zd |
|- ( ph -> ( # ` L ) e. ZZ ) |
55 |
|
coprmdvds |
|- ( ( ( # ` L ) e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( ( # ` L ) || ( M x. N ) /\ ( ( # ` L ) gcd M ) = 1 ) -> ( # ` L ) || N ) ) |
56 |
54 23 36 55
|
syl3anc |
|- ( ph -> ( ( ( # ` L ) || ( M x. N ) /\ ( ( # ` L ) gcd M ) = 1 ) -> ( # ` L ) || N ) ) |
57 |
45 48 56
|
mp2and |
|- ( ph -> ( # ` L ) || N ) |
58 |
|
dvdscmul |
|- ( ( ( # ` L ) e. ZZ /\ N e. ZZ /\ M e. ZZ ) -> ( ( # ` L ) || N -> ( M x. ( # ` L ) ) || ( M x. N ) ) ) |
59 |
54 36 23 58
|
syl3anc |
|- ( ph -> ( ( # ` L ) || N -> ( M x. ( # ` L ) ) || ( M x. N ) ) ) |
60 |
57 59
|
mpd |
|- ( ph -> ( M x. ( # ` L ) ) || ( M x. N ) ) |
61 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
62 |
|
eqid |
|- ( LSSum ` G ) = ( LSSum ` G ) |
63 |
1 2 3 4 5 6 7 8 9 61 62
|
ablfacrp |
|- ( ph -> ( ( K i^i L ) = { ( 0g ` G ) } /\ ( K ( LSSum ` G ) L ) = B ) ) |
64 |
63
|
simprd |
|- ( ph -> ( K ( LSSum ` G ) L ) = B ) |
65 |
64
|
fveq2d |
|- ( ph -> ( # ` ( K ( LSSum ` G ) L ) ) = ( # ` B ) ) |
66 |
|
eqid |
|- ( Cntz ` G ) = ( Cntz ` G ) |
67 |
63
|
simpld |
|- ( ph -> ( K i^i L ) = { ( 0g ` G ) } ) |
68 |
66 5 26 42
|
ablcntzd |
|- ( ph -> K C_ ( ( Cntz ` G ) ` L ) ) |
69 |
62 61 66 26 42 67 68 20 51
|
lsmhash |
|- ( ph -> ( # ` ( K ( LSSum ` G ) L ) ) = ( ( # ` K ) x. ( # ` L ) ) ) |
70 |
65 69
|
eqtr3d |
|- ( ph -> ( # ` B ) = ( ( # ` K ) x. ( # ` L ) ) ) |
71 |
70 9
|
eqtr3d |
|- ( ph -> ( ( # ` K ) x. ( # ` L ) ) = ( M x. N ) ) |
72 |
60 71
|
breqtrrd |
|- ( ph -> ( M x. ( # ` L ) ) || ( ( # ` K ) x. ( # ` L ) ) ) |
73 |
61
|
subg0cl |
|- ( L e. ( SubGrp ` G ) -> ( 0g ` G ) e. L ) |
74 |
|
ne0i |
|- ( ( 0g ` G ) e. L -> L =/= (/) ) |
75 |
42 73 74
|
3syl |
|- ( ph -> L =/= (/) ) |
76 |
|
hashnncl |
|- ( L e. Fin -> ( ( # ` L ) e. NN <-> L =/= (/) ) ) |
77 |
51 76
|
syl |
|- ( ph -> ( ( # ` L ) e. NN <-> L =/= (/) ) ) |
78 |
75 77
|
mpbird |
|- ( ph -> ( # ` L ) e. NN ) |
79 |
78
|
nnne0d |
|- ( ph -> ( # ` L ) =/= 0 ) |
80 |
|
dvdsmulcr |
|- ( ( M e. ZZ /\ ( # ` K ) e. ZZ /\ ( ( # ` L ) e. ZZ /\ ( # ` L ) =/= 0 ) ) -> ( ( M x. ( # ` L ) ) || ( ( # ` K ) x. ( # ` L ) ) <-> M || ( # ` K ) ) ) |
81 |
23 35 54 79 80
|
syl112anc |
|- ( ph -> ( ( M x. ( # ` L ) ) || ( ( # ` K ) x. ( # ` L ) ) <-> M || ( # ` K ) ) ) |
82 |
72 81
|
mpbid |
|- ( ph -> M || ( # ` K ) ) |
83 |
|
dvdseq |
|- ( ( ( ( # ` K ) e. NN0 /\ M e. NN0 ) /\ ( ( # ` K ) || M /\ M || ( # ` K ) ) ) -> ( # ` K ) = M ) |
84 |
22 10 39 82 83
|
syl22anc |
|- ( ph -> ( # ` K ) = M ) |
85 |
|
dvdsmulc |
|- ( ( ( # ` K ) e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( # ` K ) || M -> ( ( # ` K ) x. N ) || ( M x. N ) ) ) |
86 |
35 23 36 85
|
syl3anc |
|- ( ph -> ( ( # ` K ) || M -> ( ( # ` K ) x. N ) || ( M x. N ) ) ) |
87 |
39 86
|
mpd |
|- ( ph -> ( ( # ` K ) x. N ) || ( M x. N ) ) |
88 |
87 71
|
breqtrrd |
|- ( ph -> ( ( # ` K ) x. N ) || ( ( # ` K ) x. ( # ` L ) ) ) |
89 |
84 6
|
eqeltrd |
|- ( ph -> ( # ` K ) e. NN ) |
90 |
89
|
nnne0d |
|- ( ph -> ( # ` K ) =/= 0 ) |
91 |
|
dvdscmulr |
|- ( ( N e. ZZ /\ ( # ` L ) e. ZZ /\ ( ( # ` K ) e. ZZ /\ ( # ` K ) =/= 0 ) ) -> ( ( ( # ` K ) x. N ) || ( ( # ` K ) x. ( # ` L ) ) <-> N || ( # ` L ) ) ) |
92 |
36 54 35 90 91
|
syl112anc |
|- ( ph -> ( ( ( # ` K ) x. N ) || ( ( # ` K ) x. ( # ` L ) ) <-> N || ( # ` L ) ) ) |
93 |
88 92
|
mpbid |
|- ( ph -> N || ( # ` L ) ) |
94 |
|
dvdseq |
|- ( ( ( ( # ` L ) e. NN0 /\ N e. NN0 ) /\ ( ( # ` L ) || N /\ N || ( # ` L ) ) ) -> ( # ` L ) = N ) |
95 |
53 11 57 93 94
|
syl22anc |
|- ( ph -> ( # ` L ) = N ) |
96 |
84 95
|
jca |
|- ( ph -> ( ( # ` K ) = M /\ ( # ` L ) = N ) ) |