| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ablfacrp.b |
|- B = ( Base ` G ) |
| 2 |
|
ablfacrp.o |
|- O = ( od ` G ) |
| 3 |
|
ablfacrp.k |
|- K = { x e. B | ( O ` x ) || M } |
| 4 |
|
ablfacrp.l |
|- L = { x e. B | ( O ` x ) || N } |
| 5 |
|
ablfacrp.g |
|- ( ph -> G e. Abel ) |
| 6 |
|
ablfacrp.m |
|- ( ph -> M e. NN ) |
| 7 |
|
ablfacrp.n |
|- ( ph -> N e. NN ) |
| 8 |
|
ablfacrp.1 |
|- ( ph -> ( M gcd N ) = 1 ) |
| 9 |
|
ablfacrp.2 |
|- ( ph -> ( # ` B ) = ( M x. N ) ) |
| 10 |
|
nprmdvds1 |
|- ( p e. Prime -> -. p || 1 ) |
| 11 |
10
|
adantl |
|- ( ( ph /\ p e. Prime ) -> -. p || 1 ) |
| 12 |
8
|
adantr |
|- ( ( ph /\ p e. Prime ) -> ( M gcd N ) = 1 ) |
| 13 |
12
|
breq2d |
|- ( ( ph /\ p e. Prime ) -> ( p || ( M gcd N ) <-> p || 1 ) ) |
| 14 |
11 13
|
mtbird |
|- ( ( ph /\ p e. Prime ) -> -. p || ( M gcd N ) ) |
| 15 |
6
|
nnzd |
|- ( ph -> M e. ZZ ) |
| 16 |
2 1
|
oddvdssubg |
|- ( ( G e. Abel /\ M e. ZZ ) -> { x e. B | ( O ` x ) || M } e. ( SubGrp ` G ) ) |
| 17 |
5 15 16
|
syl2anc |
|- ( ph -> { x e. B | ( O ` x ) || M } e. ( SubGrp ` G ) ) |
| 18 |
3 17
|
eqeltrid |
|- ( ph -> K e. ( SubGrp ` G ) ) |
| 19 |
18
|
ad2antrr |
|- ( ( ( ph /\ p e. Prime ) /\ p || ( # ` K ) ) -> K e. ( SubGrp ` G ) ) |
| 20 |
|
eqid |
|- ( G |`s K ) = ( G |`s K ) |
| 21 |
20
|
subggrp |
|- ( K e. ( SubGrp ` G ) -> ( G |`s K ) e. Grp ) |
| 22 |
19 21
|
syl |
|- ( ( ( ph /\ p e. Prime ) /\ p || ( # ` K ) ) -> ( G |`s K ) e. Grp ) |
| 23 |
20
|
subgbas |
|- ( K e. ( SubGrp ` G ) -> K = ( Base ` ( G |`s K ) ) ) |
| 24 |
19 23
|
syl |
|- ( ( ( ph /\ p e. Prime ) /\ p || ( # ` K ) ) -> K = ( Base ` ( G |`s K ) ) ) |
| 25 |
6
|
nnnn0d |
|- ( ph -> M e. NN0 ) |
| 26 |
7
|
nnnn0d |
|- ( ph -> N e. NN0 ) |
| 27 |
25 26
|
nn0mulcld |
|- ( ph -> ( M x. N ) e. NN0 ) |
| 28 |
9 27
|
eqeltrd |
|- ( ph -> ( # ` B ) e. NN0 ) |
| 29 |
1
|
fvexi |
|- B e. _V |
| 30 |
|
hashclb |
|- ( B e. _V -> ( B e. Fin <-> ( # ` B ) e. NN0 ) ) |
| 31 |
29 30
|
ax-mp |
|- ( B e. Fin <-> ( # ` B ) e. NN0 ) |
| 32 |
28 31
|
sylibr |
|- ( ph -> B e. Fin ) |
| 33 |
3
|
ssrab3 |
|- K C_ B |
| 34 |
|
ssfi |
|- ( ( B e. Fin /\ K C_ B ) -> K e. Fin ) |
| 35 |
32 33 34
|
sylancl |
|- ( ph -> K e. Fin ) |
| 36 |
35
|
ad2antrr |
|- ( ( ( ph /\ p e. Prime ) /\ p || ( # ` K ) ) -> K e. Fin ) |
| 37 |
24 36
|
eqeltrrd |
|- ( ( ( ph /\ p e. Prime ) /\ p || ( # ` K ) ) -> ( Base ` ( G |`s K ) ) e. Fin ) |
| 38 |
|
simplr |
|- ( ( ( ph /\ p e. Prime ) /\ p || ( # ` K ) ) -> p e. Prime ) |
| 39 |
|
simpr |
|- ( ( ( ph /\ p e. Prime ) /\ p || ( # ` K ) ) -> p || ( # ` K ) ) |
| 40 |
24
|
fveq2d |
|- ( ( ( ph /\ p e. Prime ) /\ p || ( # ` K ) ) -> ( # ` K ) = ( # ` ( Base ` ( G |`s K ) ) ) ) |
| 41 |
39 40
|
breqtrd |
|- ( ( ( ph /\ p e. Prime ) /\ p || ( # ` K ) ) -> p || ( # ` ( Base ` ( G |`s K ) ) ) ) |
| 42 |
|
eqid |
|- ( Base ` ( G |`s K ) ) = ( Base ` ( G |`s K ) ) |
| 43 |
|
eqid |
|- ( od ` ( G |`s K ) ) = ( od ` ( G |`s K ) ) |
| 44 |
42 43
|
odcau |
|- ( ( ( ( G |`s K ) e. Grp /\ ( Base ` ( G |`s K ) ) e. Fin /\ p e. Prime ) /\ p || ( # ` ( Base ` ( G |`s K ) ) ) ) -> E. g e. ( Base ` ( G |`s K ) ) ( ( od ` ( G |`s K ) ) ` g ) = p ) |
| 45 |
22 37 38 41 44
|
syl31anc |
|- ( ( ( ph /\ p e. Prime ) /\ p || ( # ` K ) ) -> E. g e. ( Base ` ( G |`s K ) ) ( ( od ` ( G |`s K ) ) ` g ) = p ) |
| 46 |
45 24
|
rexeqtrrdv |
|- ( ( ( ph /\ p e. Prime ) /\ p || ( # ` K ) ) -> E. g e. K ( ( od ` ( G |`s K ) ) ` g ) = p ) |
| 47 |
20 2 43
|
subgod |
|- ( ( K e. ( SubGrp ` G ) /\ g e. K ) -> ( O ` g ) = ( ( od ` ( G |`s K ) ) ` g ) ) |
| 48 |
19 47
|
sylan |
|- ( ( ( ( ph /\ p e. Prime ) /\ p || ( # ` K ) ) /\ g e. K ) -> ( O ` g ) = ( ( od ` ( G |`s K ) ) ` g ) ) |
| 49 |
|
fveq2 |
|- ( x = g -> ( O ` x ) = ( O ` g ) ) |
| 50 |
49
|
breq1d |
|- ( x = g -> ( ( O ` x ) || M <-> ( O ` g ) || M ) ) |
| 51 |
50 3
|
elrab2 |
|- ( g e. K <-> ( g e. B /\ ( O ` g ) || M ) ) |
| 52 |
51
|
simprbi |
|- ( g e. K -> ( O ` g ) || M ) |
| 53 |
52
|
adantl |
|- ( ( ( ( ph /\ p e. Prime ) /\ p || ( # ` K ) ) /\ g e. K ) -> ( O ` g ) || M ) |
| 54 |
48 53
|
eqbrtrrd |
|- ( ( ( ( ph /\ p e. Prime ) /\ p || ( # ` K ) ) /\ g e. K ) -> ( ( od ` ( G |`s K ) ) ` g ) || M ) |
| 55 |
|
breq1 |
|- ( ( ( od ` ( G |`s K ) ) ` g ) = p -> ( ( ( od ` ( G |`s K ) ) ` g ) || M <-> p || M ) ) |
| 56 |
54 55
|
syl5ibcom |
|- ( ( ( ( ph /\ p e. Prime ) /\ p || ( # ` K ) ) /\ g e. K ) -> ( ( ( od ` ( G |`s K ) ) ` g ) = p -> p || M ) ) |
| 57 |
56
|
rexlimdva |
|- ( ( ( ph /\ p e. Prime ) /\ p || ( # ` K ) ) -> ( E. g e. K ( ( od ` ( G |`s K ) ) ` g ) = p -> p || M ) ) |
| 58 |
46 57
|
mpd |
|- ( ( ( ph /\ p e. Prime ) /\ p || ( # ` K ) ) -> p || M ) |
| 59 |
58
|
ex |
|- ( ( ph /\ p e. Prime ) -> ( p || ( # ` K ) -> p || M ) ) |
| 60 |
59
|
anim1d |
|- ( ( ph /\ p e. Prime ) -> ( ( p || ( # ` K ) /\ p || N ) -> ( p || M /\ p || N ) ) ) |
| 61 |
|
prmz |
|- ( p e. Prime -> p e. ZZ ) |
| 62 |
61
|
adantl |
|- ( ( ph /\ p e. Prime ) -> p e. ZZ ) |
| 63 |
|
hashcl |
|- ( K e. Fin -> ( # ` K ) e. NN0 ) |
| 64 |
35 63
|
syl |
|- ( ph -> ( # ` K ) e. NN0 ) |
| 65 |
64
|
nn0zd |
|- ( ph -> ( # ` K ) e. ZZ ) |
| 66 |
65
|
adantr |
|- ( ( ph /\ p e. Prime ) -> ( # ` K ) e. ZZ ) |
| 67 |
7
|
nnzd |
|- ( ph -> N e. ZZ ) |
| 68 |
67
|
adantr |
|- ( ( ph /\ p e. Prime ) -> N e. ZZ ) |
| 69 |
|
dvdsgcdb |
|- ( ( p e. ZZ /\ ( # ` K ) e. ZZ /\ N e. ZZ ) -> ( ( p || ( # ` K ) /\ p || N ) <-> p || ( ( # ` K ) gcd N ) ) ) |
| 70 |
62 66 68 69
|
syl3anc |
|- ( ( ph /\ p e. Prime ) -> ( ( p || ( # ` K ) /\ p || N ) <-> p || ( ( # ` K ) gcd N ) ) ) |
| 71 |
15
|
adantr |
|- ( ( ph /\ p e. Prime ) -> M e. ZZ ) |
| 72 |
|
dvdsgcdb |
|- ( ( p e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( p || M /\ p || N ) <-> p || ( M gcd N ) ) ) |
| 73 |
62 71 68 72
|
syl3anc |
|- ( ( ph /\ p e. Prime ) -> ( ( p || M /\ p || N ) <-> p || ( M gcd N ) ) ) |
| 74 |
60 70 73
|
3imtr3d |
|- ( ( ph /\ p e. Prime ) -> ( p || ( ( # ` K ) gcd N ) -> p || ( M gcd N ) ) ) |
| 75 |
14 74
|
mtod |
|- ( ( ph /\ p e. Prime ) -> -. p || ( ( # ` K ) gcd N ) ) |
| 76 |
75
|
nrexdv |
|- ( ph -> -. E. p e. Prime p || ( ( # ` K ) gcd N ) ) |
| 77 |
|
exprmfct |
|- ( ( ( # ` K ) gcd N ) e. ( ZZ>= ` 2 ) -> E. p e. Prime p || ( ( # ` K ) gcd N ) ) |
| 78 |
76 77
|
nsyl |
|- ( ph -> -. ( ( # ` K ) gcd N ) e. ( ZZ>= ` 2 ) ) |
| 79 |
7
|
nnne0d |
|- ( ph -> N =/= 0 ) |
| 80 |
|
simpr |
|- ( ( ( # ` K ) = 0 /\ N = 0 ) -> N = 0 ) |
| 81 |
80
|
necon3ai |
|- ( N =/= 0 -> -. ( ( # ` K ) = 0 /\ N = 0 ) ) |
| 82 |
79 81
|
syl |
|- ( ph -> -. ( ( # ` K ) = 0 /\ N = 0 ) ) |
| 83 |
|
gcdn0cl |
|- ( ( ( ( # ` K ) e. ZZ /\ N e. ZZ ) /\ -. ( ( # ` K ) = 0 /\ N = 0 ) ) -> ( ( # ` K ) gcd N ) e. NN ) |
| 84 |
65 67 82 83
|
syl21anc |
|- ( ph -> ( ( # ` K ) gcd N ) e. NN ) |
| 85 |
|
elnn1uz2 |
|- ( ( ( # ` K ) gcd N ) e. NN <-> ( ( ( # ` K ) gcd N ) = 1 \/ ( ( # ` K ) gcd N ) e. ( ZZ>= ` 2 ) ) ) |
| 86 |
84 85
|
sylib |
|- ( ph -> ( ( ( # ` K ) gcd N ) = 1 \/ ( ( # ` K ) gcd N ) e. ( ZZ>= ` 2 ) ) ) |
| 87 |
86
|
ord |
|- ( ph -> ( -. ( ( # ` K ) gcd N ) = 1 -> ( ( # ` K ) gcd N ) e. ( ZZ>= ` 2 ) ) ) |
| 88 |
78 87
|
mt3d |
|- ( ph -> ( ( # ` K ) gcd N ) = 1 ) |