Description: Abelian groups (and therefore also groups and monoids) exist. (Contributed by AV, 29-Apr-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | abln0 | |- Abel =/= (/) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | |- i e. _V |
|
| 2 | eqid | |- { <. ( Base ` ndx ) , { i } >. , <. ( +g ` ndx ) , { <. <. i , i >. , i >. } >. } = { <. ( Base ` ndx ) , { i } >. , <. ( +g ` ndx ) , { <. <. i , i >. , i >. } >. } |
|
| 3 | 2 | abl1 | |- ( i e. _V -> { <. ( Base ` ndx ) , { i } >. , <. ( +g ` ndx ) , { <. <. i , i >. , i >. } >. } e. Abel ) |
| 4 | ne0i | |- ( { <. ( Base ` ndx ) , { i } >. , <. ( +g ` ndx ) , { <. <. i , i >. , i >. } >. } e. Abel -> Abel =/= (/) ) |
|
| 5 | 1 3 4 | mp2b | |- Abel =/= (/) |