Metamath Proof Explorer


Theorem abln0

Description: Abelian groups (and therefore also groups and monoids) exist. (Contributed by AV, 29-Apr-2019)

Ref Expression
Assertion abln0
|- Abel =/= (/)

Proof

Step Hyp Ref Expression
1 vex
 |-  i e. _V
2 eqid
 |-  { <. ( Base ` ndx ) , { i } >. , <. ( +g ` ndx ) , { <. <. i , i >. , i >. } >. } = { <. ( Base ` ndx ) , { i } >. , <. ( +g ` ndx ) , { <. <. i , i >. , i >. } >. }
3 2 abl1
 |-  ( i e. _V -> { <. ( Base ` ndx ) , { i } >. , <. ( +g ` ndx ) , { <. <. i , i >. , i >. } >. } e. Abel )
4 ne0i
 |-  ( { <. ( Base ` ndx ) , { i } >. , <. ( +g ` ndx ) , { <. <. i , i >. , i >. } >. } e. Abel -> Abel =/= (/) )
5 1 3 4 mp2b
 |-  Abel =/= (/)