| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ablnncan.b |
|- B = ( Base ` G ) |
| 2 |
|
ablnncan.m |
|- .- = ( -g ` G ) |
| 3 |
|
ablnncan.g |
|- ( ph -> G e. Abel ) |
| 4 |
|
ablnncan.x |
|- ( ph -> X e. B ) |
| 5 |
|
ablnncan.y |
|- ( ph -> Y e. B ) |
| 6 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
| 7 |
1 6 2 3 4 4 5
|
ablsubsub |
|- ( ph -> ( X .- ( X .- Y ) ) = ( ( X .- X ) ( +g ` G ) Y ) ) |
| 8 |
|
ablgrp |
|- ( G e. Abel -> G e. Grp ) |
| 9 |
3 8
|
syl |
|- ( ph -> G e. Grp ) |
| 10 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
| 11 |
1 10 2
|
grpsubid |
|- ( ( G e. Grp /\ X e. B ) -> ( X .- X ) = ( 0g ` G ) ) |
| 12 |
9 4 11
|
syl2anc |
|- ( ph -> ( X .- X ) = ( 0g ` G ) ) |
| 13 |
12
|
oveq1d |
|- ( ph -> ( ( X .- X ) ( +g ` G ) Y ) = ( ( 0g ` G ) ( +g ` G ) Y ) ) |
| 14 |
1 6 10
|
grplid |
|- ( ( G e. Grp /\ Y e. B ) -> ( ( 0g ` G ) ( +g ` G ) Y ) = Y ) |
| 15 |
9 5 14
|
syl2anc |
|- ( ph -> ( ( 0g ` G ) ( +g ` G ) Y ) = Y ) |
| 16 |
7 13 15
|
3eqtrd |
|- ( ph -> ( X .- ( X .- Y ) ) = Y ) |