Step |
Hyp |
Ref |
Expression |
1 |
|
ablnncan.b |
|- B = ( Base ` G ) |
2 |
|
ablnncan.m |
|- .- = ( -g ` G ) |
3 |
|
ablnncan.g |
|- ( ph -> G e. Abel ) |
4 |
|
ablnncan.x |
|- ( ph -> X e. B ) |
5 |
|
ablnncan.y |
|- ( ph -> Y e. B ) |
6 |
|
ablsub32.z |
|- ( ph -> Z e. B ) |
7 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
8 |
|
ablgrp |
|- ( G e. Abel -> G e. Grp ) |
9 |
3 8
|
syl |
|- ( ph -> G e. Grp ) |
10 |
1 2
|
grpsubcl |
|- ( ( G e. Grp /\ Y e. B /\ Z e. B ) -> ( Y .- Z ) e. B ) |
11 |
9 5 6 10
|
syl3anc |
|- ( ph -> ( Y .- Z ) e. B ) |
12 |
1 7 2 3 4 11 6
|
ablsubsub4 |
|- ( ph -> ( ( X .- ( Y .- Z ) ) .- Z ) = ( X .- ( ( Y .- Z ) ( +g ` G ) Z ) ) ) |
13 |
1 7
|
ablcom |
|- ( ( G e. Abel /\ ( Y .- Z ) e. B /\ Z e. B ) -> ( ( Y .- Z ) ( +g ` G ) Z ) = ( Z ( +g ` G ) ( Y .- Z ) ) ) |
14 |
3 11 6 13
|
syl3anc |
|- ( ph -> ( ( Y .- Z ) ( +g ` G ) Z ) = ( Z ( +g ` G ) ( Y .- Z ) ) ) |
15 |
1 7 2
|
ablpncan3 |
|- ( ( G e. Abel /\ ( Z e. B /\ Y e. B ) ) -> ( Z ( +g ` G ) ( Y .- Z ) ) = Y ) |
16 |
3 6 5 15
|
syl12anc |
|- ( ph -> ( Z ( +g ` G ) ( Y .- Z ) ) = Y ) |
17 |
14 16
|
eqtrd |
|- ( ph -> ( ( Y .- Z ) ( +g ` G ) Z ) = Y ) |
18 |
17
|
oveq2d |
|- ( ph -> ( X .- ( ( Y .- Z ) ( +g ` G ) Z ) ) = ( X .- Y ) ) |
19 |
12 18
|
eqtrd |
|- ( ph -> ( ( X .- ( Y .- Z ) ) .- Z ) = ( X .- Y ) ) |