| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ablnncan.b |
|- B = ( Base ` G ) |
| 2 |
|
ablnncan.m |
|- .- = ( -g ` G ) |
| 3 |
|
ablnncan.g |
|- ( ph -> G e. Abel ) |
| 4 |
|
ablnncan.x |
|- ( ph -> X e. B ) |
| 5 |
|
ablnncan.y |
|- ( ph -> Y e. B ) |
| 6 |
|
ablsub32.z |
|- ( ph -> Z e. B ) |
| 7 |
|
ablgrp |
|- ( G e. Abel -> G e. Grp ) |
| 8 |
3 7
|
syl |
|- ( ph -> G e. Grp ) |
| 9 |
1 2
|
grpsubcl |
|- ( ( G e. Grp /\ X e. B /\ Z e. B ) -> ( X .- Z ) e. B ) |
| 10 |
8 4 6 9
|
syl3anc |
|- ( ph -> ( X .- Z ) e. B ) |
| 11 |
1 2 3 4 5 10
|
ablsub32 |
|- ( ph -> ( ( X .- Y ) .- ( X .- Z ) ) = ( ( X .- ( X .- Z ) ) .- Y ) ) |
| 12 |
1 2 3 4 6
|
ablnncan |
|- ( ph -> ( X .- ( X .- Z ) ) = Z ) |
| 13 |
12
|
oveq1d |
|- ( ph -> ( ( X .- ( X .- Z ) ) .- Y ) = ( Z .- Y ) ) |
| 14 |
11 13
|
eqtrd |
|- ( ph -> ( ( X .- Y ) .- ( X .- Z ) ) = ( Z .- Y ) ) |