Step |
Hyp |
Ref |
Expression |
1 |
|
ablcom.1 |
|- X = ran G |
2 |
1
|
ablocom |
|- ( ( G e. AbelOp /\ B e. X /\ C e. X ) -> ( B G C ) = ( C G B ) ) |
3 |
2
|
3adant3r1 |
|- ( ( G e. AbelOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( B G C ) = ( C G B ) ) |
4 |
3
|
oveq2d |
|- ( ( G e. AbelOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A G ( B G C ) ) = ( A G ( C G B ) ) ) |
5 |
|
ablogrpo |
|- ( G e. AbelOp -> G e. GrpOp ) |
6 |
1
|
grpoass |
|- ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A G B ) G C ) = ( A G ( B G C ) ) ) |
7 |
5 6
|
sylan |
|- ( ( G e. AbelOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A G B ) G C ) = ( A G ( B G C ) ) ) |
8 |
|
3ancomb |
|- ( ( A e. X /\ B e. X /\ C e. X ) <-> ( A e. X /\ C e. X /\ B e. X ) ) |
9 |
1
|
grpoass |
|- ( ( G e. GrpOp /\ ( A e. X /\ C e. X /\ B e. X ) ) -> ( ( A G C ) G B ) = ( A G ( C G B ) ) ) |
10 |
8 9
|
sylan2b |
|- ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A G C ) G B ) = ( A G ( C G B ) ) ) |
11 |
5 10
|
sylan |
|- ( ( G e. AbelOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A G C ) G B ) = ( A G ( C G B ) ) ) |
12 |
4 7 11
|
3eqtr4d |
|- ( ( G e. AbelOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A G B ) G C ) = ( ( A G C ) G B ) ) |