Step |
Hyp |
Ref |
Expression |
1 |
|
ablcom.1 |
|- X = ran G |
2 |
1
|
isablo |
|- ( G e. AbelOp <-> ( G e. GrpOp /\ A. x e. X A. y e. X ( x G y ) = ( y G x ) ) ) |
3 |
2
|
simprbi |
|- ( G e. AbelOp -> A. x e. X A. y e. X ( x G y ) = ( y G x ) ) |
4 |
|
oveq1 |
|- ( x = A -> ( x G y ) = ( A G y ) ) |
5 |
|
oveq2 |
|- ( x = A -> ( y G x ) = ( y G A ) ) |
6 |
4 5
|
eqeq12d |
|- ( x = A -> ( ( x G y ) = ( y G x ) <-> ( A G y ) = ( y G A ) ) ) |
7 |
|
oveq2 |
|- ( y = B -> ( A G y ) = ( A G B ) ) |
8 |
|
oveq1 |
|- ( y = B -> ( y G A ) = ( B G A ) ) |
9 |
7 8
|
eqeq12d |
|- ( y = B -> ( ( A G y ) = ( y G A ) <-> ( A G B ) = ( B G A ) ) ) |
10 |
6 9
|
rspc2v |
|- ( ( A e. X /\ B e. X ) -> ( A. x e. X A. y e. X ( x G y ) = ( y G x ) -> ( A G B ) = ( B G A ) ) ) |
11 |
3 10
|
syl5com |
|- ( G e. AbelOp -> ( ( A e. X /\ B e. X ) -> ( A G B ) = ( B G A ) ) ) |
12 |
11
|
3impib |
|- ( ( G e. AbelOp /\ A e. X /\ B e. X ) -> ( A G B ) = ( B G A ) ) |