| Step | Hyp | Ref | Expression | 
						
							| 1 |  | abldiv.1 |  |-  X = ran G | 
						
							| 2 |  | abldiv.3 |  |-  D = ( /g ` G ) | 
						
							| 3 | 1 | ablocom |  |-  ( ( G e. AbelOp /\ B e. X /\ C e. X ) -> ( B G C ) = ( C G B ) ) | 
						
							| 4 | 3 | 3adant3r1 |  |-  ( ( G e. AbelOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( B G C ) = ( C G B ) ) | 
						
							| 5 | 4 | oveq2d |  |-  ( ( G e. AbelOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A D ( B G C ) ) = ( A D ( C G B ) ) ) | 
						
							| 6 | 1 2 | ablodivdiv4 |  |-  ( ( G e. AbelOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A D B ) D C ) = ( A D ( B G C ) ) ) | 
						
							| 7 |  | 3ancomb |  |-  ( ( A e. X /\ B e. X /\ C e. X ) <-> ( A e. X /\ C e. X /\ B e. X ) ) | 
						
							| 8 | 1 2 | ablodivdiv4 |  |-  ( ( G e. AbelOp /\ ( A e. X /\ C e. X /\ B e. X ) ) -> ( ( A D C ) D B ) = ( A D ( C G B ) ) ) | 
						
							| 9 | 7 8 | sylan2b |  |-  ( ( G e. AbelOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A D C ) D B ) = ( A D ( C G B ) ) ) | 
						
							| 10 | 5 6 9 | 3eqtr4d |  |-  ( ( G e. AbelOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A D B ) D C ) = ( ( A D C ) D B ) ) |