Step |
Hyp |
Ref |
Expression |
1 |
|
abldiv.1 |
|- X = ran G |
2 |
|
abldiv.3 |
|- D = ( /g ` G ) |
3 |
1
|
ablocom |
|- ( ( G e. AbelOp /\ B e. X /\ C e. X ) -> ( B G C ) = ( C G B ) ) |
4 |
3
|
3adant3r1 |
|- ( ( G e. AbelOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( B G C ) = ( C G B ) ) |
5 |
4
|
oveq2d |
|- ( ( G e. AbelOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A D ( B G C ) ) = ( A D ( C G B ) ) ) |
6 |
1 2
|
ablodivdiv4 |
|- ( ( G e. AbelOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A D B ) D C ) = ( A D ( B G C ) ) ) |
7 |
|
3ancomb |
|- ( ( A e. X /\ B e. X /\ C e. X ) <-> ( A e. X /\ C e. X /\ B e. X ) ) |
8 |
1 2
|
ablodivdiv4 |
|- ( ( G e. AbelOp /\ ( A e. X /\ C e. X /\ B e. X ) ) -> ( ( A D C ) D B ) = ( A D ( C G B ) ) ) |
9 |
7 8
|
sylan2b |
|- ( ( G e. AbelOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A D C ) D B ) = ( A D ( C G B ) ) ) |
10 |
5 6 9
|
3eqtr4d |
|- ( ( G e. AbelOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A D B ) D C ) = ( ( A D C ) D B ) ) |