| Step | Hyp | Ref | Expression | 
						
							| 1 |  | abldiv.1 |  |-  X = ran G | 
						
							| 2 |  | abldiv.3 |  |-  D = ( /g ` G ) | 
						
							| 3 |  | ablogrpo |  |-  ( G e. AbelOp -> G e. GrpOp ) | 
						
							| 4 | 1 2 | grpodivdiv |  |-  ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A D ( B D C ) ) = ( A G ( C D B ) ) ) | 
						
							| 5 | 3 4 | sylan |  |-  ( ( G e. AbelOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A D ( B D C ) ) = ( A G ( C D B ) ) ) | 
						
							| 6 |  | 3ancomb |  |-  ( ( A e. X /\ B e. X /\ C e. X ) <-> ( A e. X /\ C e. X /\ B e. X ) ) | 
						
							| 7 | 1 2 | grpomuldivass |  |-  ( ( G e. GrpOp /\ ( A e. X /\ C e. X /\ B e. X ) ) -> ( ( A G C ) D B ) = ( A G ( C D B ) ) ) | 
						
							| 8 | 3 7 | sylan |  |-  ( ( G e. AbelOp /\ ( A e. X /\ C e. X /\ B e. X ) ) -> ( ( A G C ) D B ) = ( A G ( C D B ) ) ) | 
						
							| 9 | 1 2 | ablomuldiv |  |-  ( ( G e. AbelOp /\ ( A e. X /\ C e. X /\ B e. X ) ) -> ( ( A G C ) D B ) = ( ( A D B ) G C ) ) | 
						
							| 10 | 8 9 | eqtr3d |  |-  ( ( G e. AbelOp /\ ( A e. X /\ C e. X /\ B e. X ) ) -> ( A G ( C D B ) ) = ( ( A D B ) G C ) ) | 
						
							| 11 | 6 10 | sylan2b |  |-  ( ( G e. AbelOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A G ( C D B ) ) = ( ( A D B ) G C ) ) | 
						
							| 12 | 5 11 | eqtrd |  |-  ( ( G e. AbelOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A D ( B D C ) ) = ( ( A D B ) G C ) ) |